Evaluation of a Natural Language Processing Approach to Identify Social Determinants of Health in Electronic Health Records in a Diverse Community Cohort

被引:0
|
作者
Rouillard, Christopher J. [1 ,2 ]
Nasser, Mahmoud A. [2 ]
Hu, Haihong [2 ]
Roblin, Douglas W. [2 ]
机构
[1] Univ Illinois, Carle Illinois Coll Med, Champaign, IL USA
[2] Kaiser Permanente Midatlantic States, Midatlant Permanente Med Grp Pc, Rockville, MD USA
关键词
social determinants of health; social needs; natural language processing; CARE; TOOLS; NEEDS;
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Health care systems in the United States are increasingly interested in measuring and addressing social determinants of health (SDoH). Advances in electronic health record systems and Natural Language Processing (NLP) create a unique opportunity to systematically document patient SDoH from digitized free-text provider notes. Methods: Patient SDoH status [recorded by Your Current Life Situation (YCLS) Survey] and associated provider notes recorded between March 2017 and June 2020 were extracted (32,261 beneficiaries; 50,722 YCLS surveys; 485,425 provider notes). NLP patterns were generated using a machine learning test statistic (Term Frequency-Inverse Document Frequency). Patterns were developed and assessed in a training, training validation, and final validation dataset (64%, 16%, and 20% of total data, respectively). NLP models analyzed SDoH-specific categories (housing, medical care, and transportation needs) and a combined SDoH metric. Model performance was assessed using sensitivity, specificity, and Cohen kappa statistic, assuming the YCLS Survey to be the gold standard. Results: Within the training validation dataset, NLP models showed strong sensitivity and specificity, with moderate agreement with the YCLS Survey (Housing: sensitivity = 0.67, specificity = 0.89, kappa = 0.51; Medical care: sensitivity = 0.55, specificity = 0.73, lc = 0.20; Transportation: sensitivity = 0.79, specificity = 0.87, kappa = 0.58). Model performance in the training and training validation datasets were comparable. In the final validation dataset, a combined SDoH prediction metric showed sensitivity = 0.77, specificity = 0.69, kappa = 0.45. Conclusion: This NLP algorithm demonstrated moderate performance in identification of unmet patient social needs. This novel approach may enable improved targeting of interventions, allocation of limited resources and monitoring a health care system's addressing its patients' SDoH needs.
引用
收藏
页码:248 / 255
页数:8
相关论文
共 50 条
  • [1] Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
    Wu, Wenbo
    Holkeboer, Kaes J.
    Kolawole, Temidun O.
    Carbone, Lorrie
    Mahmoudi, Elham
    [J]. HEALTH SERVICES RESEARCH, 2023, 58 (06) : 1292 - 1302
  • [2] Large language models to identify social determinants of health in electronic health records
    Guevara, Marco
    Chen, Shan
    Thomas, Spencer
    Chaunzwa, Tafadzwa L.
    Franco, Idalid
    Kann, Benjamin H.
    Moningi, Shalini
    Qian, Jack M.
    Goldstein, Madeleine
    Harper, Susan
    Aerts, Hugo J. W. L.
    Catalano, Paul J.
    Savova, Guergana K.
    Mak, Raymond H.
    Bitterman, Danielle S.
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [3] Large language models to identify social determinants of health in electronic health records
    Marco Guevara
    Shan Chen
    Spencer Thomas
    Tafadzwa L. Chaunzwa
    Idalid Franco
    Benjamin H. Kann
    Shalini Moningi
    Jack M. Qian
    Madeleine Goldstein
    Susan Harper
    Hugo J. W. L. Aerts
    Paul J. Catalano
    Guergana K. Savova
    Raymond H. Mak
    Danielle S. Bitterman
    [J]. npj Digital Medicine, 7
  • [4] Extracting social determinants of health from electronic health records using natural language processing: a systematic review
    Patra, Braja G.
    Sharma, Mohit M.
    Vekaria, Veer
    Adekkanattu, Prakash
    Patterson, Olga, V
    Glicksberg, Benjamin
    Lepow, Lauren A.
    Ryu, Euijung
    Biernacka, Joanna M.
    Furmanchuk, Al'ona
    George, Thomas J.
    Hogan, William
    Wu, Yonghui
    Yang, Xi
    Bian, Jiang
    Weissman, Myrna
    Wickramaratne, Priya
    Mann, J. John
    Olfson, Mark
    Campion, Thomas R., Jr.
    Weiner, Mark
    Pathak, Jyotishman
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (12) : 2716 - 2727
  • [5] Natural language processing to identify lupus nephritis phenotype in electronic health records
    Deng, Yu
    Pacheco, Jennifer A.
    Ghosh, Anika
    Chung, Anh
    Mao, Chengsheng
    Smith, Joshua C.
    Zhao, Juan
    Wei, Wei-Qi
    Barnado, April
    Dorn, Chad
    Weng, Chunhua
    Liu, Cong
    Cordon, Adam
    Yu, Jingzhi
    Tedla, Yacob
    Kho, Abel
    Ramsey-Goldman, Rosalind
    Walunas, Theresa
    Luo, Yuan
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 22 (SUPPL 2)
  • [6] Natural language processing to identify lupus nephritis phenotype in electronic health records
    Yu Deng
    Jennifer A. Pacheco
    Anika Ghosh
    Anh Chung
    Chengsheng Mao
    Joshua C. Smith
    Juan Zhao
    Wei-Qi Wei
    April Barnado
    Chad Dorn
    Chunhua Weng
    Cong Liu
    Adam Cordon
    Jingzhi Yu
    Yacob Tedla
    Abel Kho
    Rosalind Ramsey-Goldman
    Theresa Walunas
    Yuan Luo
    [J]. BMC Medical Informatics and Decision Making, 22
  • [7] Natural Language Processing to Identify Lupus Nephritis Phenotype in Electronic Health Records
    Deng, Yu
    Pacheco, Jennifer
    Chung, Anh
    Mao, Chengsheng
    Smith, Joshua
    Zhao, Juan
    Wei, Wei-Qi
    Barnado, April
    Weng, Chunhua
    Liu, Cong
    Gordon, Adam
    Yu, Jingzhi
    Tedla, Yacob
    Kho, Abel
    Ramsey-Goldman, Rosalind
    Walunas, Theresa
    Luo, Yuan
    [J]. ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 666 - 667
  • [8] Using Natural Language Processing to Identify Different Lens Pathology in Electronic Health Records
    Stein, Joshua d.
    Zhou, Yunshu
    Andrews, Chris a.
    Kim, Judy e.
    Addis, Victoria
    Bixler, Jill
    Grove, Nathan
    Mcmillan, Brian
    Munir, Saleha z.
    Pershing, Suzann
    Schultz, Jeffrey s.
    Stagg, Brian c.
    Wang, Sophia y.
    Woreta, Fasika
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2024, 262 : 153 - 160
  • [9] Cohort design and natural language processing to reduce bias in electronic health records research
    Khurshid, Shaan
    Reeder, Christopher
    Harrington, Lia X.
    Singh, Pulkit
    Sarma, Gopal
    Friedman, Samuel F.
    Di Achille, Paolo
    Diamant, Nathaniel
    Cunningham, Jonathan W.
    Turner, Ashby C.
    Lau, Emily S.
    Haimovich, Julian S.
    Al-Alusi, Mostafa A.
    Wang, Xin
    Klarqvist, Marcus D. R.
    Ashburner, Jeffrey M.
    Diedrich, Christian
    Ghadessi, Mercedeh
    Mielke, Johanna
    Eilken, Hanna M.
    McElhinney, Alice
    Derix, Andrea
    Atlas, Steven J.
    Ellinor, Patrick T.
    Philippakis, Anthony A.
    Anderson, Christopher D.
    Ho, Jennifer E.
    Batra, Puneet
    Lubitz, Steven A.
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [10] Cohort design and natural language processing to reduce bias in electronic health records research
    Shaan Khurshid
    Christopher Reeder
    Lia X. Harrington
    Pulkit Singh
    Gopal Sarma
    Samuel F. Friedman
    Paolo Di Achille
    Nathaniel Diamant
    Jonathan W. Cunningham
    Ashby C. Turner
    Emily S. Lau
    Julian S. Haimovich
    Mostafa A. Al-Alusi
    Xin Wang
    Marcus D. R. Klarqvist
    Jeffrey M. Ashburner
    Christian Diedrich
    Mercedeh Ghadessi
    Johanna Mielke
    Hanna M. Eilken
    Alice McElhinney
    Andrea Derix
    Steven J. Atlas
    Patrick T. Ellinor
    Anthony A. Philippakis
    Christopher D. Anderson
    Jennifer E. Ho
    Puneet Batra
    Steven A. Lubitz
    [J]. npj Digital Medicine, 5