Reforming of ethanol on Co/Al2O3 catalysts reduced at different temperatures

被引:41
|
作者
Ferencz, Zs. [1 ]
Varga, E. [1 ]
Puskas, R. [2 ]
Konya, Z. [2 ,3 ]
Baan, K. [1 ]
Oszko, A. [1 ]
Erclohelyi, A. [1 ]
机构
[1] Univ Szeged, Inst Phys Chem & Mat Sci, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Inst Appl & Environm Chem, Rerrich Bela Ter 1, H-6720 Szeged, Hungary
[3] Univ Szeged, MTA SZTE React Kinet & Surface Chem Res Grp, Rerrich Bela Ter 1, H-6720 Szeged, Hungary
关键词
Reforming of ethanol; Co/Al2O3; catalyst; Reduction temperature; XPS of Co/Al2O3; Surface carbon; SUPPORTED COBALT CATALYSTS; WALLED CARBON NANOTUBES; SURFACE CHARACTERIZATION; OXIDATION-STATES; PARTICLE-SIZE; CO; HYDROGEN; PERFORMANCE; CO3O4; ADSORPTION;
D O I
10.1016/j.jcat.2017.12.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The steam reforming of ethanol was studied at 823 K on 10% Co/Al2O3 samples calcined at 973 K and reduced at different temperatures from 773 K to 1173 K. The catalysts were characterized by XPS, XRD, TPR, Raman and DRIFT spectroscopy. XRD results revealed that spinel structures are detectable after the thermal treatment of Co/Al2O3, which could be attributed mainly to Co3O4 formation. TPR and XPS measurements show that even the high temperature (1173 K) reduction is not sufficient to totally reduce Co to metallic state. The ethanol conversion at 823 K was relatively stable and it was higher than 90% in all cases, but the product distribution as a function of time on stream significantly depended on the reduction temperature. The selectivities of H-2, CO2, and CH4 formation decreased in time but those of ethylene, acetone and acetaldehyde increased. The changes became less pronounced when the reduction temperature increased, so the H-2, CO, and CO2 selectivities increased while that of ethylene decreased significantly as a function of reduction temperature. XPS measurements revealed a new low binding energy state in the Co 2p(3/2) region during the reaction when the samples were reduced at or below 973 K. This feature was assigned to the formation of a very thin Co layer. On the used catalysts reduced at or above 973 K structured carbon was detected. On the XP spectra several carbon species were identified at the beginning of the reaction. A new feature was also found at lower binding energy which became more and more dominant with the exception of Co/Al2O3 reduced at 1173 K. These species could be assigned as CoCx carbide-like structures rather than a structured carbon layer. It was found that the surface carbon formed in the reaction gradually influences the product distribution. The carbon which probably is built in the Co subsurface poisons the reactivity of the metal and the effect of the support comes in the forefront. The structured carbon layer formed on the Co/Al2O3 reduced at high temperature does not influence the hydrogen formation in the ethanol reforming. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 130
页数:13
相关论文
共 50 条
  • [41] Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane
    Ewbank, Jessica L.
    Kovarik, Libor
    Kenvin, Christian C.
    Sievers, Carsten
    GREEN CHEMISTRY, 2014, 16 (02) : 885 - 896
  • [42] Carbon Dioxide Reforming of Methane Over Co/Al2O3 Catalysts Doped with Manganese
    Anh Ngoc T. Cao
    Duy Ha Le Phuong
    Pham T. T. Phuong
    Thanh H. Trinh
    Tung M. Nguyen
    Phuong T. H. Pham
    Topics in Catalysis, 2023, 66 : 247 - 261
  • [43] Ethanol CO2 reforming on La2O3 and CeO2-promoted Cu/Al2O3 catalysts for enhanced hydrogen production
    Shafiqah, Mohd-Nasir Nor
    Hai Nguyen Tran
    Trinh Duy Nguyen
    Phuong, Pham T. T.
    Abdullah, Bawadi
    Lam, Su Shiung
    Phuong Nguyen-Tri
    Kumar, Ravinder
    Nanda, Sonil
    Vo, Dai-Viet N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (36) : 18398 - 18410
  • [44] CO2 reforming of CH4 on doped Rh/Al2O3 catalysts
    Sarusi, I.
    Fodor, K.
    Baan, K.
    Oszko, A.
    Potari, G.
    Erdohelyi, A.
    CATALYSIS TODAY, 2011, 171 (01) : 132 - 139
  • [45] Effects of MgO on Ni/Al2O3 catalysts for CO2 reforming of methane to syngas
    Al-Baqmaa, Yousef A.
    Al-Fatesh, Ahmed S.
    Ibrahim, Ahmed A.
    Bagabas, Abdulaziz A.
    Almubadde, Fahad S.
    Alromaeh, Abdulaziz I.
    Abu-Dahrieh, Jehad K.
    Abasaeed, Ahmed E.
    Fakeeha, Anis H.
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (11) : 5015 - 5028
  • [46] Effects of MgO on Ni/Al2O3 catalysts for CO2 reforming of methane to syngas
    Yousef A. Al-Baqmaa
    Ahmed S. Al-Fatesh
    Ahmed A. Ibrahim
    Abdulaziz A. Bagabas
    Fahad S. Almubadde
    Abdulaziz I. Alromaeh
    Jehad K. Abu-Dahrieh
    Ahmed E. Abasaeed
    Anis H. Fakeeha
    Research on Chemical Intermediates, 2023, 49 : 5015 - 5028
  • [47] Acetone hydrogenation over co-precipitated Ni/Al2O3, Co/Al2O3 and Fe/Al2O3 catalysts
    Narayanan, S
    Unnikrishnan, R
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1998, 94 (08): : 1123 - 1128
  • [48] Silicon poisoning of Pt/Al2O3 catalysts in naphtha reforming
    Souza, MOG
    Reyes, P
    Rangel, MC
    CATALYST DEACTIVATION 1999, 1999, 126 : 469 - 472
  • [49] A Study on the Properties of Pt/Mo/Al2O3 Reforming Catalysts
    Vinichenko, N. V.
    Tregubenko, V. Yu
    Vagapova, M. N.
    Belyi, A. S.
    21ST CENTURY: CHEMISTRY TO LIFE, 2019, 2143
  • [50] A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming
    Kaddouri, A
    Mazzocchia, C
    CATALYSIS COMMUNICATIONS, 2004, 5 (06) : 339 - 345