Effects of MgO on Ni/Al2O3 catalysts for CO2 reforming of methane to syngas

被引:0
|
作者
Yousef A. Al-Baqmaa
Ahmed S. Al-Fatesh
Ahmed A. Ibrahim
Abdulaziz A. Bagabas
Fahad S. Almubadde
Abdulaziz I. Alromaeh
Jehad K. Abu-Dahrieh
Ahmed E. Abasaeed
Anis H. Fakeeha
机构
[1] King Saud University,Chemical Engineering Department, College of Engineering
[2] Executive Office,School of Chemistry and Chemical Engineering
[3] King Abdulaziz City for Science and Technology (KACST),undefined
[4] Queen’s University Belfast,undefined
来源
关键词
Carbon dioxide reforming of methane; Ni-based catalyst; MgO modifier; -Al; O; support;
D O I
暂无
中图分类号
学科分类号
摘要
Carbon dioxide reforming of methane (CRM) converts CH4 and CO2 greenhouse gases into syngas over nickel-based catalysts. We performed CRM in a tubular microreactor at 700 °C by using 5.0 wt.% NiO catalyst, supported over mixtures of γ-Al2O3 + x MgO (x = 20, 30, 63, and 70 wt.%). The process of impregnation was used to prepare the catalysts. For characterization, N2-physisorption, XRD, H2-TPR, TGA, and Raman spectroscopy techniques were employed. Among the examined catalysts, 5Ni/Al2O3 + 63%MgO was found the most active, where it showed ≅ 72% CH4 conversion, 73% CO2 conversion, and 0.82 H2/CO mole ratio over 7 h of reaction. The MgO modifier was the primary component, which favorably affected both Ni dispersion and stability, for the good interaction between NiO and γ-alumina. The mono-supported samples displayed the lowest total hydrogen consumption. In TGA, the 5Ni/Al2O3 + 63%MgO exhibited a significant weight decrease (40%), reflecting its activity. Furthermore, the Raman spectroscopy analysis showed that the crystallinity of the carbon over this catalyst was more pronounced than the others.
引用
收藏
页码:5015 / 5028
页数:13
相关论文
共 50 条
  • [1] Effects of MgO on Ni/Al2O3 catalysts for CO2 reforming of methane to syngas
    Al-Baqmaa, Yousef A.
    Al-Fatesh, Ahmed S.
    Ibrahim, Ahmed A.
    Bagabas, Abdulaziz A.
    Almubadde, Fahad S.
    Alromaeh, Abdulaziz I.
    Abu-Dahrieh, Jehad K.
    Abasaeed, Ahmed E.
    Fakeeha, Anis H.
    [J]. RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (11) : 5015 - 5028
  • [2] Effects of Y2O3-modification to Ni/γ-Al2O3 catalysts on autothermal reforming of methane with CO2 to syngas
    Sun, Laizhi
    Tan, Yisheng
    Zhang, Qingde
    Xie, Hongjuan
    Song, Faen
    Han, Yizhuo
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (04) : 1892 - 1900
  • [3] Simultaneous Oxidative Conversion and CO2 Reforming of Methane to Syngas over Modified Ni/Al2O3 Catalysts
    Liu, Yuanfeng
    Hou, Zhenshan
    Eli, Wumanjiang
    He, Zhenhong
    [J]. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2013, 35 (04): : 1130 - 1137
  • [4] Kinetic comparison of Ni/Al2O3 and Ni/MgO-Al2O3 nano structure catalysts in CO2 reforming of methane
    Alipour, Zahra
    Meshkani, Fereshteh
    Rezaei, Mehran
    [J]. IRANIAN JOURNAL OF CATALYSIS, 2019, 9 (01): : 51 - 61
  • [5] Influence of MgO in the CO2 – steam reforming of methane to syngas by NiO/MgO/ α-Al2O3 catalyst
    Jafar Yeganeh Mehr
    Kheirolah Jafari Jozani
    Ali Nakhaei Pour
    Yahya Zamani
    [J]. Reaction Kinetics and Catalysis Letters, 2002, 75 : 267 - 273
  • [6] Ni/Al2O3 catalysts for syngas obtention via reforming with O2 and/or CO2
    Nichio, NN
    Casella, ML
    Ponzi, EN
    Ferretti, OA
    [J]. NATURAL GAS CONVERSION V, 1998, 119 : 723 - 728
  • [7] CO2 reforming of methane over Ni on MgO-precoated Al2O3
    Liu, ZW
    Roh, HS
    Jun, KW
    Potdar, HS
    Ji, M
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2003, 9 (05) : 576 - 583
  • [8] Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming
    Juan-Juan, J
    Román-Martínez, MC
    Illán-Gómez, MJ
    [J]. APPLIED CATALYSIS A-GENERAL, 2004, 264 (02) : 169 - 174
  • [9] Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts
    Foo, Say Yei
    Cheng, Chin Kui
    Nguyen, Tuan-Huy
    Adesina, Adesoji A.
    [J]. CATALYSIS TODAY, 2011, 164 (01) : 221 - 226
  • [10] CO2 reforming of methane over activated carbon-Ni/MgO-Al2O3 composite catalysts for syngas production
    Khan, Muhammad Masood
    Jin, Lijun
    Khan, Muhammad Mahmood
    Li, Yang
    Saulat, Hammad
    Zhang, Yun
    Sarfraz, Muhammad
    Zhu, Jialong
    Hu, Haoquan
    [J]. FUEL PROCESSING TECHNOLOGY, 2021, 211