Sentinel-1 SAR and LiDAR to detect extent and depth flood using Random Forests machine learning

被引:1
|
作者
Soria-Ruiz, Jesus [1 ]
Fernandez-Ordonez, Yolanda M. [2 ]
Ambrosio-Ambrosio, Juan P. [1 ]
Escalona-Maurice, Miguel A. [2 ]
机构
[1] Natl Inst Res Forestry Agr & Livestock INIFAP, Zinacantepec 52107, Mexico
[2] Postgrad Coll Agr Sci COLPOS, Montecillo 56230, Mexico
关键词
Flooding; Sentinel-1; SAR; Random Forest Machine Learning;
D O I
10.1109/IGARSS46834.2022.9884139
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research was carried out to identify the extent and depth of flooded areas using Sentinel-1 SAR, the Digital Elevation Model generated with LiDAR and Random Forest machine learning. Training and cross-validation was performed on a set of backscatter value samples obtained from Sentinel-1. The results indicate that out of five combinations, the Random Forest algorithm had the best performance when using the four combinations (RF + Polarization VH+VV + MDE) with F1m = 0.977, AUC = 0.998 and Kappa = 0.955. SAR images have potential advantages that allow rapid and efficient diagnosis of the extent of flooding caused by excess rainfall in many regions around world.
引用
收藏
页码:5113 / 5116
页数:4
相关论文
共 50 条
  • [31] Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
    Konapala, Goutam
    Kumar, Sujay, V
    Ahmad, Shahryar Khalique
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 180 : 163 - 173
  • [32] Mapping Flood Extent and Frequency from Sentinel-1 Imagery during the Extremely Warm Winter of 2020 in Boreal Floodplains and Forests
    Sipelgas, Liis
    Aavaste, Age
    Uiboupin, Rivo
    REMOTE SENSING, 2021, 13 (23)
  • [33] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Suranjana B. Borah
    Thota Sivasankar
    M. N. S. Ramya
    P. L. N. Raju
    Environmental Monitoring and Assessment, 2018, 190
  • [34] AUTOMATIC FLOOD DETECTION FROM SENTINEL-1 DATA USING DEEP LEARNING ARCHITECTURES
    Ghosh, B.
    Garg, S.
    Motagh, M.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 201 - 208
  • [35] FLOOD DAMAGE ANALYSIS IN KORIYAMA CITY CAUSED BY TYPHOON HAGIBIS USING SENTINEL-1 SAR DATA
    Wakabayashi, Hiroyuki
    Igarashi, Takahiro
    Tsukamoto, Shinya
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6021 - 6024
  • [36] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Borah, Suranjana B.
    Sivasankar, Thota
    Ramya, M. N. S.
    Raju, P. L. N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (09)
  • [37] SYSTEMATIC AND AUTOMATIC LARGE-SCALE FLOOD MONITORING SYSTEM USING SENTINEL-1 SAR DATA
    Chini, Marco
    Pelich, Ramona
    Hostache, Renaud
    Matgen, Patrick
    Bossung, Christian
    Campanella, Paolo
    Rudari, Roberto
    Bally, Philippe
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3251 - 3254
  • [38] A deep learning based oil spill detector using Sentinel-1 SAR imagery
    Yang, Yi-Jie
    Singha, Suman
    Mayerle, Roberto
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (11) : 4287 - 4314
  • [39] CV4FEE: Flood Extent Estimation Using Consensus Voting in Ensemble of Methods for Change Detection in Sentinel-1 GRD SAR Images
    Thangavel, Ragesh
    Sreevalsan-Nair, Jaya
    2021 7TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2021,
  • [40] Shallow Water Depth Retrieval From Multitemporal Sentinel-1 SAR Data
    Bian, Xiaolin
    Shao, Yun
    Wang, Shiang
    Tian, Wei
    Wang, Xiaochen
    Zhang, Chunyan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) : 2991 - 3000