Shallow Water Depth Retrieval From Multitemporal Sentinel-1 SAR Data

被引:22
|
作者
Bian, Xiaolin [1 ,2 ,3 ]
Shao, Yun [1 ,2 ,3 ]
Wang, Shiang [4 ]
Tian, Wei [3 ,5 ]
Wang, Xiaochen [1 ,2 ,3 ]
Zhang, Chunyan [3 ,5 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Deqing Acad Satellite Applicat, Lab Target Microwave Properties, Huzhou 313000, Zhejiang, Peoples R China
[4] Natl Ocean Technol Ctr, Tianjin 300112, Peoples R China
[5] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
基金
美国国家科学基金会;
关键词
Bathymetry; dispersion relation; Kalman filter; swell waves; synthetic aperture radar (SAR); SUBMARINE SAND WAVES; BACKSCATTERING CROSS-SECTION; COMPOSITE SURFACE MODEL; MULTIBAND IMAGING RADAR; COASTAL BATHYMETRY; BOTTOM TOPOGRAPHY; OCEAN SURFACE; INVERSION; SEA;
D O I
10.1109/JSTARS.2018.2851845
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Sentinel-1 constellation can provide numerous high-resolution C-band synthetic aperture radar (SAR) data with long-term continuity and freely, thus showing a cost-effective solution for the coastal monitoring at high or moderate spatial resolutions. The major goal is to improve estimates of shallow water depth for SAR applications. We present an algorithm that is based on the linear dispersion relation between water depth and swell parameters like swell wavelength, direction, and period to estimate shallow water depth using multitemporal SAR data with a short repeating cycle. This is accomplished via circular convolution and Kalman filter that provides both the estimates and a measure of their uncertainty at each location. The introduced algorithm is tested on four Sentinel-1 interferometric wide swath (IW) mode SAR images over the coastal region of Fujian Province, China. The retrieved water depth both from multitemporal SAR images and different single SAR images show general agreement with water depth from an official electronic navigational chart. All comparisons indicate that the proposed method is feasible and multitemporal SAR data have great potential in bathymetric surveying.
引用
收藏
页码:2991 / 3000
页数:10
相关论文
共 50 条
  • [1] Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
    Marzi, David
    Gamba, Paolo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11789 - 11799
  • [2] Sentinel-1 Multitemporal SAR Products
    Amitrano, Donato
    Cecinati, Francesca
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3973 - 3976
  • [3] POLARIMETRIC AND MULTITEMPORAL INFORMATION EXTRACTED FROM SENTINEL-1 SAR DATA TO MAP BUILDINGS
    Chini, Marco
    Pelich, Ramona
    Hostache, Renaud
    Matgen, Patrick
    Lopez-Martinez, Carlos
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8132 - 8134
  • [4] CHANGE ANALYSIS USING MULTITEMPORAL SENTINEL-1 SAR IMAGES
    Thu Trang Le
    Atto, Abdourrahmane M.
    Trouve, Emmanuel
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4145 - 4148
  • [5] Pixel Based Multitemporal Sentinel-1 SAR Despeckling PIMSAR
    Manninen, T.
    Jaaskelainen, E.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Pixel Based Multitemporal Sentinel-1 SAR Despeckling PIMSAR
    Manninen, T.
    Jaaskelainen, E.
    [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [7] Discrimination of pearl millet in the rainfed agroecosystem using multitemporal sentinel-1 SAR data
    Jugal Kishore Mani
    A. O. Varghese
    G. Sreenivasan
    Ashish Shrivastava
    [J]. Proceedings of the Indian National Science Academy, 2024, 90 : 31 - 38
  • [8] Discrimination of pearl millet in the rainfed agroecosystem using multitemporal sentinel-1 SAR data
    Mani, Jugal Kishore
    Varghese, A. O.
    Sreenivasan, G.
    Shrivastava, Ashish
    [J]. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 31 - 38
  • [9] High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data
    Daniel Baron
    Stefan Erasmi
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 389 - 405
  • [10] High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data
    Baron, Daniel
    Erasmi, Stefan
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (06): : 389 - 405