Shallow Water Depth Retrieval From Multitemporal Sentinel-1 SAR Data

被引:22
|
作者
Bian, Xiaolin [1 ,2 ,3 ]
Shao, Yun [1 ,2 ,3 ]
Wang, Shiang [4 ]
Tian, Wei [3 ,5 ]
Wang, Xiaochen [1 ,2 ,3 ]
Zhang, Chunyan [3 ,5 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Deqing Acad Satellite Applicat, Lab Target Microwave Properties, Huzhou 313000, Zhejiang, Peoples R China
[4] Natl Ocean Technol Ctr, Tianjin 300112, Peoples R China
[5] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
基金
美国国家科学基金会;
关键词
Bathymetry; dispersion relation; Kalman filter; swell waves; synthetic aperture radar (SAR); SUBMARINE SAND WAVES; BACKSCATTERING CROSS-SECTION; COMPOSITE SURFACE MODEL; MULTIBAND IMAGING RADAR; COASTAL BATHYMETRY; BOTTOM TOPOGRAPHY; OCEAN SURFACE; INVERSION; SEA;
D O I
10.1109/JSTARS.2018.2851845
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Sentinel-1 constellation can provide numerous high-resolution C-band synthetic aperture radar (SAR) data with long-term continuity and freely, thus showing a cost-effective solution for the coastal monitoring at high or moderate spatial resolutions. The major goal is to improve estimates of shallow water depth for SAR applications. We present an algorithm that is based on the linear dispersion relation between water depth and swell parameters like swell wavelength, direction, and period to estimate shallow water depth using multitemporal SAR data with a short repeating cycle. This is accomplished via circular convolution and Kalman filter that provides both the estimates and a measure of their uncertainty at each location. The introduced algorithm is tested on four Sentinel-1 interferometric wide swath (IW) mode SAR images over the coastal region of Fujian Province, China. The retrieved water depth both from multitemporal SAR images and different single SAR images show general agreement with water depth from an official electronic navigational chart. All comparisons indicate that the proposed method is feasible and multitemporal SAR data have great potential in bathymetric surveying.
引用
收藏
页码:2991 / 3000
页数:10
相关论文
共 50 条
  • [41] Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas
    He L.
    Qin Q.
    Ren H.
    Du J.
    Meng J.
    Du C.
    [J]. Qin, Qiming (qmqin@pku.edu.cn), 1600, Chinese Society of Agricultural Engineering (32): : 142 - 148
  • [42] Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data
    LIN Bo
    SHAO Weizeng
    LI Xiaofeng
    LI Huan
    DU Xiaoqing
    JI Qiyan
    CAI Lina
    [J]. Acta Oceanologica Sinica, 2017, 36 (07) : 95 - 101
  • [43] Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data
    Lin Bo
    Shao Weizeng
    Li Xiaofeng
    Li Huan
    Du Xiaoqing
    Ji Qiyan
    Cai Lina
    [J]. ACTA OCEANOLOGICA SINICA, 2017, 36 (07) : 95 - 101
  • [44] Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France
    Ndikumana, Emile
    Dinh Ho Tong Minh
    Hai Thu Dang Nguyen
    Baghdadi, Nicolas
    Courault, Dominique
    Hossard, Laure
    El Moussawi, Ibrahim
    [J]. REMOTE SENSING, 2018, 10 (09)
  • [45] Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data
    Bo Lin
    Weizeng Shao
    Xiaofeng Li
    Huan Li
    Xiaoqing Du
    Qiyan Ji
    Lina Cai
    [J]. Acta Oceanologica Sinica, 2017, 36 : 95 - 101
  • [46] Significant wave height retrieval from Sentinel-1 SAR imagery by convolutional neural network
    Sihan Xue
    Xupu Geng
    Xiao-Hai Yan
    Ting Xie
    Qiuze Yu
    [J]. Journal of Oceanography, 2020, 76 : 465 - 477
  • [47] Significant wave height retrieval from Sentinel-1 SAR imagery by convolutional neural network
    Xue, Sihan
    Geng, Xupu
    Yan, Xiao-Hai
    Xie, Ting
    Yu, Qiuze
    [J]. JOURNAL OF OCEANOGRAPHY, 2020, 76 (06) : 465 - 477
  • [48] Crop Type Classification based on Machine Learning with Multitemporal Sentinel-1 Data
    Jeppesen, Jacob Hoxbroe
    Jacobsen, Rune Hylsberg
    Jorgensen, Rasmus Nyholm
    [J]. 2020 23RD EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2020), 2020, : 557 - 564
  • [49] Detecting Deforestation Using Logistic Analysis and Sentinel-1 Multitemporal Backscatter Data
    Dascalu, Adrian
    Catalao, Joao
    Navarro, Ana
    [J]. REMOTE SENSING, 2023, 15 (02)
  • [50] METHOD AND ACCURACY OF ESTIMATING SNOW DEPTH USING SENTINEL-1 SAR DATA IN NIIGATA PREFECTURE IN JAPAN
    Abo, Hidenori
    Osawa, Takahiro
    Ge, Pinglan
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 121 - 124