Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model

被引:55
|
作者
de Jong, Wibe A. [1 ]
Lee, Kyle [2 ,3 ]
Mulligan, James [2 ,3 ]
Ploskon, Mateusz [2 ]
Ringer, Felix [2 ]
Yao, Xiaojun [4 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Nucl Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
关键词
LATTICE GAUGE-THEORIES; REAL-TIME DYNAMICS; SYSTEMS;
D O I
10.1103/PhysRevD.106.054508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present simulations of nonequilibrium dynamics of quantum field theories on digital quantum computers. As a representative example, we consider the Schwinger model, a (1 thorn 1)-dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment described by a scalar field theory. We use the Hamiltonian formulation of the Schwinger model discretized on a spatial lattice. With the thermal scalar fields traced out, the Schwinger model can be treated as an open quantum system and its real-time dynamics are governed by a Lindblad equation in the Markovian limit. The interaction with the environment ultimately drives the system to thermal equilibrium. In the quantum Brownian motion limit, the Lindblad equation is related to a field theoretical Caldeira-Leggett equation. By using the Stinespring dilation theorem with ancillary qubits, we perform studies of both the nonequilibrium dynamics and the preparation of a thermal state in the Schwinger model using IBM's simulator and quantum devices. The real-time dynamics of field theories as open quantum systems and the thermal state preparation studied here are relevant for a variety of applications in nuclear and particle physics, quantum information and cosmology.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Thermalization and photoluminescence dynamics in quantum well heterostructures
    Roussignol, Ph., 2000, Wiley-VCH Verlag Berlin GmbH, Weinheim, Germany (178):
  • [32] Thermalization dynamics of a gauge theory on a quantum simulator
    Zhou, Zhao-Yu
    Su, Guo-Xian
    Halimeh, Jad C.
    Ott, Robert
    Sun, Hui
    Hauke, Philipp
    Yang, Bing
    Yuan, Zhen-Sheng
    Berges, Juergen
    Pan, Jian-Wei
    SCIENCE, 2022, 377 (6603) : 311 - 314
  • [33] Ergodic dynamics and thermalization in an isolated quantum system
    Neill, C.
    Roushan, P.
    Fang, M.
    Chen, Y.
    Kolodrubetz, M.
    Chen, Z.
    Megrant, A.
    Barends, R.
    Campbell, B.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Kelly, J.
    Mutus, J.
    O'Malley, P. J. J.
    Quintana, C.
    Sankt, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Polkovnikov, A.
    Martinis, J. M.
    NATURE PHYSICS, 2016, 12 (11) : 1037 - 1041
  • [34] Quantum gauge invariant formalism of the Schwinger model - Gaugeon theory of the Schwinger model
    Nakawaki, Y
    PROGRESS OF THEORETICAL PHYSICS, 1997, 98 (05): : 1193 - 1207
  • [35] Scalable simulation of nonequilibrium quantum dynamics via classically optimized unitary circuits
    Causer, Luke
    Jung, Felix
    Mitra, Asimpunya
    Pollmann, Frank
    Gammon-Smith, Adam
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [36] Nonequilibrium quantum spin dynamics from two-particle irreducible functional integral techniques in the Schwinger boson representation
    Schuckert, A.
    Orioli, A. Pineiro
    Berges, J.
    PHYSICAL REVIEW B, 2018, 98 (22)
  • [37] QUANTUM HAMILTONIAN REDUCTION OF THE SCHWINGER MODEL
    ITAKURA, K
    OHTA, K
    PHYSICAL REVIEW D, 1994, 50 (06): : 4145 - 4156
  • [38] A SIMULATION OF THE SCHWINGER MODEL IN THE OVERLAP FORMALISM
    NARAYANAN, R
    NEUBERGER, H
    VRANAS, P
    PHYSICS LETTERS B, 1995, 353 (04) : 507 - 512
  • [39] DYNAMICS OF FIELD FLUCTUATIONS IN THE SCHWINGER MODEL
    VERBEURE, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) : 689 - 693
  • [40] Classically emulated digital quantum simulation for screening and confinement in the Schwinger model with a topological term
    Honda, Masazumi
    Itou, Etsuko
    Kikuchi, Yuta
    Nagano, Lento
    Okuda, Takuya
    PHYSICAL REVIEW D, 2022, 105 (01)