Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model

被引:55
|
作者
de Jong, Wibe A. [1 ]
Lee, Kyle [2 ,3 ]
Mulligan, James [2 ,3 ]
Ploskon, Mateusz [2 ]
Ringer, Felix [2 ]
Yao, Xiaojun [4 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Nucl Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
关键词
LATTICE GAUGE-THEORIES; REAL-TIME DYNAMICS; SYSTEMS;
D O I
10.1103/PhysRevD.106.054508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present simulations of nonequilibrium dynamics of quantum field theories on digital quantum computers. As a representative example, we consider the Schwinger model, a (1 thorn 1)-dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment described by a scalar field theory. We use the Hamiltonian formulation of the Schwinger model discretized on a spatial lattice. With the thermal scalar fields traced out, the Schwinger model can be treated as an open quantum system and its real-time dynamics are governed by a Lindblad equation in the Markovian limit. The interaction with the environment ultimately drives the system to thermal equilibrium. In the quantum Brownian motion limit, the Lindblad equation is related to a field theoretical Caldeira-Leggett equation. By using the Stinespring dilation theorem with ancillary qubits, we perform studies of both the nonequilibrium dynamics and the preparation of a thermal state in the Schwinger model using IBM's simulator and quantum devices. The real-time dynamics of field theories as open quantum systems and the thermal state preparation studied here are relevant for a variety of applications in nuclear and particle physics, quantum information and cosmology.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum
    Pomarico, Domenico
    Cosmai, Leonardo
    Facchi, Paolo
    Lupo, Cosmo
    Pascazio, Saverio
    Pepe, Francesco V.
    ENTROPY, 2023, 25 (04)
  • [22] Nonequilibrium dynamics of quantum tunneling
    Hirota, K
    PHYSICAL REVIEW D, 2000, 61 (12)
  • [23] Nonequilibrium dynamics of quantum fields
    Farias, R. L. S.
    Cassol-Seewald, N. C.
    Krein, G.
    Ramos, R. O.
    NUCLEAR PHYSICS A, 2007, 782 : 33C - 36C
  • [24] Quantum dynamics in nonequilibrium environments
    Emary, Clive
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [25] Nonequilibrium quantum brain dynamics
    Nishiyama, Akihiro
    Tanaka, Shigenori
    Tuszynski, Jack A.
    QUANTUM BOUNDARIES OF LIFE, 2020, 82 : 159 - 180
  • [26] Bounds in nonequilibrium quantum dynamics
    Gong, Zongping
    Hamazaki, Ryusuke
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (31):
  • [27] Thermalization Dynamics Close to a Quantum Phase Transition
    Patane, Dario
    Silva, Alessandro
    Sols, Fernando
    Amico, Luigi
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [28] Thermalization dynamics of a gauge theory on a quantum simulator
    Ge, Zi-Yong
    Fan, Heng
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (25): : 2971 - 2973
  • [29] Thermalization and photoluminescence dynamics in quantum well heterostructures
    Roussignol, P
    Tignon, J
    Bastard, G
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2000, 178 (01): : 57 - 61
  • [30] Ergodic dynamics and thermalization in an isolated quantum system
    C. Neill
    P. Roushan
    M. Fang
    Y. Chen
    M. Kolodrubetz
    Z. Chen
    A. Megrant
    R. Barends
    B. Campbell
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    J. Kelly
    J. Mutus
    P. J. J. O’Malley
    C. Quintana
    D. Sank
    A. Vainsencher
    J. Wenner
    T. C. White
    A. Polkovnikov
    J. M. Martinis
    Nature Physics, 2016, 12 : 1037 - 1041