Behavioral Modeling of GaN Power Amplifiers Using Long Short-Term Memory Networks

被引:0
|
作者
Chen, Peng [1 ]
Alsahali, Sattam [1 ]
Alt, Alexander [1 ]
Lees, Jonathan [1 ]
Tasker, Paul J. [1 ]
机构
[1] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
基金
英国工程与自然科学研究理事会;
关键词
Artificial neural networks; behavioral modeling; Doherty power amplifier; long short-term memory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the formulation of a behavioral model for a gallium nitride (GaN) Doherty power amplifier (DPA) using long short-term memory (LSTM) networks. Implemented in TensorFlow, LSTM networks can construct the dynamic behavior with memory effects by learning the useful patterns in the time domain. The behavioral model is built using the measured in-phase and quadrature (I/Q) data of the DPA, under excitation by a 20-MHz LTE signal. A comparative study indicates that the LSTM model is capable of accurately capturing the AM/AM and AM/PM characteristics of the DPA, as well as achieving competitive accuracy when compared to Volterra-based models.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Empirical modeling of ethanol production dynamics using long short-term memory recurrent neural networks
    Sousa F.M.M.
    Fonseca R.R.
    da Silva F.V.
    Bioresource Technology Reports, 2021, 15
  • [32] Short-term Individual Electric Vehicle Charging Behavior Prediction Using Long Short-term Memory Networks
    Khwaja, Ahmed S.
    Venkatesh, Bala
    Anpalagan, Alagan
    2020 IEEE 25TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (CAMAD), 2020,
  • [33] Prediction of crucial nuclear power plant parameters using long short-term memory neural networks
    Lei, Jichong
    Ren, Changan
    Li, Wei
    Fu, Liming
    Li, Zhicai
    Ni, Zining
    Li, Yukun
    Liu, Chengwei
    Zhang, Huajian
    Chen, Zhenping
    Yu, Tao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21467 - 21479
  • [34] Continuous Low-Power Ammonia Monitoring Using Long Short-Term Memory Neural Networks
    Jia, Zhenhua
    Lyu, Xinmeng
    Zhang, Wuyang
    Martin, Richard P.
    Howard, Richard E.
    Zhang, Yanyong
    SENSYS'18: PROCEEDINGS OF THE 16TH CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, 2018, : 224 - 236
  • [35] Solar Irradiance Nowcasting for Virtual Power Plants Using Multimodal Long Short-Term Memory Networks
    Haputhanthri, Dilantha
    De Silva, Daswin
    Sierla, Seppo
    Alahakoon, Damminda
    Nawaratne, Rashmika
    Jennings, Andrew
    Vyatkin, Valeriy
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [36] Diagnosing Dysarthria with Long Short-Term Memory Networks
    Mayle, Alex
    Mou, Zhiwei
    Bunescu, Razvan
    Mirshekarian, Sadegh
    Xu, Li
    Liu, Chang
    INTERSPEECH 2019, 2019, : 4514 - 4518
  • [37] Molecular Design With Long Short-Term Memory Networks
    Grisoni, Francesca
    Schneider, Gisbert
    JOURNAL OF COMPUTER AIDED CHEMISTRY, 2019, 20 : 35 - 42
  • [38] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [39] Memory behavioral modeling of RF power amplifiers
    Sanchez, Cesar
    de Mingo, Jesus
    Garcia, Paloma
    Luis Carro, Pedro
    Valdovinos, Antonio
    2008 IEEE 67TH VEHICULAR TECHNOLOGY CONFERENCE-SPRING, VOLS 1-7, 2008, : 1954 - 1958
  • [40] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116