Behavioral Modeling of GaN Power Amplifiers Using Long Short-Term Memory Networks

被引:0
|
作者
Chen, Peng [1 ]
Alsahali, Sattam [1 ]
Alt, Alexander [1 ]
Lees, Jonathan [1 ]
Tasker, Paul J. [1 ]
机构
[1] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
基金
英国工程与自然科学研究理事会;
关键词
Artificial neural networks; behavioral modeling; Doherty power amplifier; long short-term memory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the formulation of a behavioral model for a gallium nitride (GaN) Doherty power amplifier (DPA) using long short-term memory (LSTM) networks. Implemented in TensorFlow, LSTM networks can construct the dynamic behavior with memory effects by learning the useful patterns in the time domain. The behavioral model is built using the measured in-phase and quadrature (I/Q) data of the DPA, under excitation by a 20-MHz LTE signal. A comparative study indicates that the LSTM model is capable of accurately capturing the AM/AM and AM/PM characteristics of the DPA, as well as achieving competitive accuracy when compared to Volterra-based models.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Short-term power load forecasting using integrated methods based on long short-term memory
    WenJie Zhang
    Jian Qin
    Feng Mei
    JunJie Fu
    Bo Dai
    WenWu Yu
    Science China Technological Sciences, 2020, 63 : 614 - 624
  • [22] Long Short-Term Memory Neural Networks for Modeling Nonlinear Electronic Components
    Moradi, Mahvash A.
    Sadrossadat, Sayed Alireza
    Derhami, Vali
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11 (05): : 840 - 847
  • [23] Improvements on Long Term Memory Modeling in Power Amplifiers.
    Ngoya, Edouard
    Quindroit, Christophe
    Nebus, Jean-Michel
    2009 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-3, 2009, : 1357 - 1360
  • [24] Subclinical tremor differentiation using long short-term memory networks
    Nanayakkara, Gerard Ruchin Randil
    Chan, Ping Yi
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2025,
  • [25] Forecast Customer Flow using Long Short-Term Memory Networks
    Yin, Zongming
    Zhu, Junzhang
    Zhang, Xiaofeng
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 61 - 66
  • [26] Modular Multitarget Tracking Using Long Short-Term Memory Networks
    Verma, Rishabh
    Rajesh, R.
    Easwaran, M. S.
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2021, 18 (10): : 751 - 754
  • [27] Using long short-term memory networks for river flow prediction
    Xu, Wei
    Jiang, Yanan
    Zhang, Xiaoli
    Li, Yi
    Zhang, Run
    Fu, Guangtao
    HYDROLOGY RESEARCH, 2020, 51 (06): : 1358 - 1376
  • [28] ICU Mortality Prediction Using Long Short-Term Memory Networks
    Mili, Manel
    Kerkeni, Asma
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2022, 2022, 13756 : 242 - 251
  • [29] NONLINEAR BEHAVIORAL OF GaN DOHERTY POWER AMPLIFIERS USING NEURAL MODELING
    Liu, Haiwen
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (02) : 307 - 309
  • [30] Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks
    Chakravarti, Suman K.
    Alla, Sai Radha Mani
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2019, 2