Behavioral Modeling of GaN Power Amplifiers Using Long Short-Term Memory Networks

被引:0
|
作者
Chen, Peng [1 ]
Alsahali, Sattam [1 ]
Alt, Alexander [1 ]
Lees, Jonathan [1 ]
Tasker, Paul J. [1 ]
机构
[1] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
基金
英国工程与自然科学研究理事会;
关键词
Artificial neural networks; behavioral modeling; Doherty power amplifier; long short-term memory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the formulation of a behavioral model for a gallium nitride (GaN) Doherty power amplifier (DPA) using long short-term memory (LSTM) networks. Implemented in TensorFlow, LSTM networks can construct the dynamic behavior with memory effects by learning the useful patterns in the time domain. The behavioral model is built using the measured in-phase and quadrature (I/Q) data of the DPA, under excitation by a 20-MHz LTE signal. A comparative study indicates that the LSTM model is capable of accurately capturing the AM/AM and AM/PM characteristics of the DPA, as well as achieving competitive accuracy when compared to Volterra-based models.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers
    Li, Hongmin
    Zhang, Yikang
    Li, Gang
    Liu, Falin
    IEEE ACCESS, 2020, 8 : 63780 - 63789
  • [2] Categorisation of power quality problems using long short-term memory networks
    Abdelsalam, Abdelazeem A.
    Hassanin, Ahmed M.
    Hasanien, Hany M.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2021, 15 (10) : 1626 - 1639
  • [3] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [4] Language Modeling Using Part-of-speech and Long Short-Term Memory Networks
    Norouzi, Sanaz Saki
    Akbari, Ahmad
    Nasersharif, Babak
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 182 - 187
  • [5] Multi-fidelity surrogate modeling using long short-term memory networks
    Conti, Paolo
    Guo, Mengwu
    Manzoni, Andrea
    Hesthaven, Jan S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [6] Modeling Speaker Variability Using Long Short-Term Memory Networks for Speech Recognition
    Li, Xiangang
    Wu, Xihong
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1086 - 1090
  • [7] Radial Deformation Emplacement in Power Transformers Using Long Short-Term Memory Networks
    Moradzadeh, Arash
    Pourhossein, Kazem
    Mohammadi-Ivatloo, Behnam
    Khalili, Tohid
    Bidram, Ali
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [8] Reliability Estimation Using Long Short-Term Memory Networks
    Davila-Frias, Alex
    Khumprom, Phattara
    Yadav, Om Prakash
    2023 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, RAMS, 2023,
  • [9] Classification of HRV using Long Short-Term Memory Networks
    Leite, Argentina
    Silva, Maria Eduarda
    Rocha, Ana Paula
    2020 11TH CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO): COMPUTATION AND MODELLING IN PHYSIOLOGY NEW CHALLENGES AND OPPORTUNITIES, 2020,
  • [10] Photovoltaic power forecasting with a long short-term memory autoencoder networks
    Sabri, Mohammed
    El Hassouni, Mohammed
    SOFT COMPUTING, 2023, 27 (15) : 10533 - 10553