Sharp bounds for the anisotropic p-capacity of Euclidean compact sets

被引:2
|
作者
Li, Ruixuan [1 ]
Xiong, Changwei [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610065, Sichuan, Peoples R China
关键词
Anisotropic p-capacity; Inverse anisotropic mean curvature flow; Anisotropic Hawking mass; MEAN-CURVATURE FLOW; HYPERSURFACES; MANIFOLDS;
D O I
10.1016/j.jde.2022.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove various sharp bounds for the anisotropic p-capacity CapF,p(K) (1 < p < n) of compact sets K in the Euclidean space Rn (n >= 2). Our results are mainly the anisotropic generalizations of some isotropic 2017] and [Xiao, Adv. Geom. 2017]. Key ingredients in the proofs include the inverse anisotropic mean curvature flow (IAMCF), the anisotropic Hawking mass and its monotonicity property along IAMCF for certain surfaces, and the anisotropic isocapacitary inequality. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 224
页数:29
相关论文
共 50 条
  • [31] The compactness and the concentration compactness via p-capacity
    Anoop, T. V.
    Das, Ujjal
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2715 - 2740
  • [32] The Hadamard variational formula and the Minkowski problem for p-capacity
    Colesanti, A.
    Nystrom, K.
    Salani, P.
    Xiao, J.
    Yang, D.
    Zhang, G.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1511 - 1588
  • [33] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Julien Roth
    Abhitosh Upadhyay
    Archiv der Mathematik, 2019, 113 : 213 - 224
  • [34] The structure of typical compact sets in Euclidean space
    A. V. Kuz'minykh
    Siberian Mathematical Journal, 1997, 38 : 296 - 301
  • [35] A Sampling Theory for Compact Sets in Euclidean Space
    Frédéric Chazal
    David Cohen-Steiner
    André Lieutier
    Discrete & Computational Geometry, 2009, 41 : 461 - 479
  • [36] The structure of typical compact sets in Euclidean space
    Kuzminykh, AV
    SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (02) : 296 - 301
  • [37] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Roth, Julien
    Upadhyay, Abhitosh
    ARCHIV DER MATHEMATIK, 2019, 113 (02) : 213 - 224
  • [38] The Discrete Orlicz-Minkowski Problem for p-Capacity
    Lewen Ji
    Zhihui Yang
    Acta Mathematica Scientia, 2022, 42 : 1403 - 1413
  • [39] A Sampling Theory for Compact Sets in Euclidean Space
    Chazal, Frederic
    Cohen-Steiner, David
    Lieutier, Andre
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (03) : 461 - 479
  • [40] RIESZ POTENTIALS, K,P-CAPACITY, AND P-MODULES
    WALLIN, H
    MICHIGAN MATHEMATICAL JOURNAL, 1971, 18 (03) : 257 - &