Some hyperbolicity results for Henon-like diffeomorphisms

被引:6
|
作者
Hoensch, Ulrich A. [1 ]
机构
[1] Rocky Mt Coll, Billings, MT 59102 USA
关键词
D O I
10.1088/0951-7715/21/3/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two dimensional C-2 diffeomorphisms satisfying certain geometric conditions and study their boundary of hyperbolicity. Assuming small Jacobian determinant, we obtain uniform hyperbolicity of an induced first-return map off the orbit of the homoclinic tangency. Our results apply to orientation-preserving Henon maps with small Jacobian determinant.
引用
收藏
页码:587 / 611
页数:25
相关论文
共 50 条
  • [41] Q-S synchronization in 3D Henon-like map and generalized Henon map via a scalar controller
    Yan, ZY
    PHYSICS LETTERS A, 2005, 342 (04) : 309 - 317
  • [42] A Henon-like chaotic map and its application in image encryption combined with compressed sensing
    Li, Yaning
    Bi, Lvqing
    Li, Chunbiao
    Xu, Kesheng
    Li, Yongxin
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [43] The transversal homoclinic points are dense in the codimension-1 Henon-like strange attractors
    Cao, YL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) : 1877 - 1883
  • [44] Existence of blenders in a Henon-like family: geometric insights from invariant manifold computations
    Hittmeyer, Stefanie
    Krauskopf, Bernd
    Osinga, Hinke M.
    Shinohara, Katsutoshi
    NONLINEARITY, 2018, 31 (10) : R239 - R267
  • [45] Partial hyperbolicity for symplectic diffeomorphisms
    Horita, Vanderlei
    Tahzibi, Ali
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 641 - 661
  • [46] Infinitely many double-boundary-peak solutions for a Henon-like equation with critical nonlinearity
    Liu, Zhongyuan
    Peng, Shuangjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) : 370 - 400
  • [47] A Henon-like map inspired by the generalized discrete-time FitzHugh-Nagumo model
    Zhan, Feibiao
    Liu, Shenquan
    NONLINEAR DYNAMICS, 2019, 97 (04) : 2675 - 2691
  • [48] TOPOLOGICAL HYPERBOLICITY AND THE COLEMAN CONJECTURE FOR DIFFEOMORPHISMS
    SHAFER, DS
    SWANSON, RC
    WALKER, RB
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 69 (02) : 149 - 165
  • [49] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms
    Pujals, ER
    Sambarino, M
    ANNALS OF MATHEMATICS, 2000, 151 (03) : 961 - 1023
  • [50] Quasi-periodic Henon-like attractors in the Lorenz-84 climate model with seasonal forcing
    Broer, HW
    Vitolo, R
    Simó, C
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 601 - 606