Some hyperbolicity results for Henon-like diffeomorphisms

被引:6
|
作者
Hoensch, Ulrich A. [1 ]
机构
[1] Rocky Mt Coll, Billings, MT 59102 USA
关键词
D O I
10.1088/0951-7715/21/3/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two dimensional C-2 diffeomorphisms satisfying certain geometric conditions and study their boundary of hyperbolicity. Assuming small Jacobian determinant, we obtain uniform hyperbolicity of an induced first-return map off the orbit of the homoclinic tangency. Our results apply to orientation-preserving Henon maps with small Jacobian determinant.
引用
收藏
页码:587 / 611
页数:25
相关论文
共 50 条
  • [21] Examples of Lorenz-like Attractors in Henon-like Maps
    Gonchenko, S. V.
    Gonchenko, A. S.
    Ovsyannikov, I. I.
    Turaev, D. V.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (05) : 48 - 70
  • [22] Lyapunov spectrum for Henon-like maps at the first bifurcation
    Takahasi, Hiroki
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 1168 - 1200
  • [23] BLENDERS FOR A NON-NORMALLY HENON-LIKE FAMILY
    Kiriki, Shin
    Nakajima, Masaki
    TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (02): : 149 - 166
  • [24] Basin problem for Henon-like attractors in arbitrary dimensions
    Horita, V
    Muniz, N
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (02) : 481 - 504
  • [25] Birkhoff spectrum for Henon-like maps at the first bifurcation
    Takahasi, Hiroki
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (01): : 41 - 59
  • [26] Random perturbations and statistical properties of Henon-like maps
    Benedicks, Michael
    Viana, Marcelo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 713 - 752
  • [27] ABUNDANCE OF NON-UNIFORMLY HYPERBOLIC HENON-LIKE ENDOMORPHISMS
    Berger, Pierre
    ASTERISQUE, 2019, (410) : 53 - 177
  • [28] The density of the transversal homoclinic points in the Henon-like strange attractors
    Cao, YL
    Kiriki, S
    CHAOS SOLITONS & FRACTALS, 2002, 13 (04) : 665 - 671
  • [29] Densely branching trees as models for Henon-like and Lozi-like attractors
    Boronski, J.
    Stimac, S.
    ADVANCES IN MATHEMATICS, 2023, 429
  • [30] Generalized Cascade Synchronization of Discrete-time Henon-like Map
    Li, Yin
    Li, Biao
    Chen, Yong
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 2908 - 2913