Age estimation based on improved discriminative Gaussian process latent variable model

被引:10
|
作者
Cai, Lijun [1 ]
Huang, Lei [1 ]
Liu, Changping [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
关键词
Age estimation; Discriminative Gaussian process latent variable model; Kernel fisher discriminant analysis; Gaussian process regression;
D O I
10.1007/s11042-015-2668-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Affected by various factors (genes, living habits and so on), different people present distinct aging patterns. To discover the underlying trend of aging patterns, we propose an effective age estimation method based on DGPLVM (Discriminative Gaussian Process Latent Variable Model). DGPLVM is a kind of discriminative latent variable method for manifold learning. It discovers the low-dimensional manifold by employing a discriminative prior distribution over the latent space. DGPLVM with KFDA (Kernel Fisher Discriminant Analysis) prior has been studied and successfully applied to face verification. Different with face verification which is a two-class problem, age estimation is a linearly inseparable multi-class problem. In this paper, DGPLVM with KFDA is reformulated to get the low-dimensional representations for age estimation. After low-dimensional representations are obtained, Gaussian process regression model is adopted to find the age regressor mapping low-dimensional representations to ages. Experimental results on two widely used databases FG-NET and MORPH show that reformulated DGPLVM with KFDA is a good application in age estimation and achieves comparable results to state-of-the arts.
引用
收藏
页码:11977 / 11994
页数:18
相关论文
共 50 条
  • [31] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [32] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [33] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [34] A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
    Ziaei, Navid
    Nazari, Behzad
    Eden, Uri T.
    Widge, Alik S.
    Yousefi, Ali
    IEEE ACCESS, 2024, 12 : 113314 - 113335
  • [35] Dual Diversified Dynamical Gaussian Process Latent Variable Model for Video Repairing
    Xiong, Hao
    Liu, Tongliang
    Tao, Dacheng
    Shen, Heng Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3626 - 3637
  • [36] Semi-supervised Gaussian process latent variable model with pairwise constraints
    Wang, Xiumei
    Gao, Xinbo
    Yuan, Yuan
    Tao, Dacheng
    Li, Jie
    NEUROCOMPUTING, 2010, 73 (10-12) : 2186 - 2195
  • [37] Shared Linear Encoder-Based Multikernel Gaussian Process Latent Variable Model for Visual Classification
    Li, Jinxing
    Lu, Guangming
    Zhang, Bob
    You, Jane
    Zhang, David
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (02) : 534 - 547
  • [38] Gaussian Process Latent Variable Model-Based Multi-Output Modeling of Incomplete Data
    Hu, Zhiyong
    Wang, Chao
    Wu, Jianguo
    Du, Dongping
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1941 - 1951
  • [39] Human Action Recognition Using Improved Sparse Gaussian Process Latent Variable Model and Hidden Conditional Random Filed
    Cai, Linqin
    Liu, Xiaolin
    Ding, Heen
    Chen, Fuli
    IEEE ACCESS, 2018, 6 : 20047 - 20057
  • [40] Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models
    Liu, Yuhao
    Djuric, Petar M.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4193 - 4197