Support vector machines for temporal classification of block design fMRI data

被引:286
|
作者
LaConte, S
Strother, S
Cherkassky, V
Anderson, J
Hu, XP
机构
[1] Emory Univ, Georgia Inst Technol, Atlanta, GA 30322 USA
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
support vector machine; functional magnetic resonance imaging; canonical variates analysis;
D O I
10.1016/j.neuroimage.2005.01.048
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother, S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 1027; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D., 2002. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15, 747-771]. We compare SVM to canonical variates analysis (CVA) by examining the relative sensitivity of each method to ten combinations of preprocessing choices consisting of spatial smoothing, temporal detrending, and motion correction. Important to the discussion are the issues of classification performance, model interpretation, and validation in the context of fMRI. As the SVM has many unique properties, we examine the interpretation of support vector models with respect to neuroimaging data. We propose four methods for extracting activation maps from SVM models, and we examine one of these in detail. For both CVA and SVM, we have classified individual time samples of whole brain data, with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with no averaging of scans or prior feature selection. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 50 条
  • [41] Correlation Kernels for Support Vector Machines Classification with Applications in Cancer Data
    Jiang, Hao
    Ching, Wai-Ki
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012
  • [42] Semi-supervised support vector machines for data classification with uncertainty
    Ling, J
    Li, S
    ICEMS 2005: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2005, : 2278 - 2281
  • [43] Aerial LiDAR data classification using Support Vector Machines (SVM)
    Lodha, Suresh K.
    Kreps, Edward J.
    Helmbold, David P.
    Fitzpatrick, Darren
    THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2007, : 567 - 574
  • [44] Transductive Support Vector Machines for classification of microarray gene expression data
    Semolini, R
    Von Zuben, FJ
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2946 - 2951
  • [45] MULTICLASS SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF ECG DATA WITH MISSING VALUES
    Hejazi, Maryamsadat
    Al-Haddad, S. A. R.
    Singh, Yashwant Prasad
    Hashim, Shaiful Jahari
    Aziz, Ahmad Fazli Abdul
    APPLIED ARTIFICIAL INTELLIGENCE, 2015, 29 (07) : 660 - 674
  • [46] Evolving data-adaptive support vector machines for binary classification
    Dudzik, Wojciech
    Nalepa, Jakub
    Kawulok, Michal
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [47] Semi-supervised support vector machines for unlabeled data classification
    Fung, G
    Mangasarian, OL
    OPTIMIZATION METHODS & SOFTWARE, 2001, 15 (01): : 29 - 44
  • [48] Aerial LiDAR data classification using weighted support vector machines
    Wu, J. (wujun93161@hotmail.com), 1600, Editorial Board of Medical Journal of Wuhan University (38):
  • [49] Data-Driven Fault Classification Using Support Vector Machines
    Jallepalli, Deepthi
    Kakhki, Fatemeh Davoudi
    INTELLIGENT HUMAN SYSTEMS INTEGRATION 2021, 2021, 1322 : 316 - 322
  • [50] Classification of Imbalanced Data by Oversampling in Kernel Space of Support Vector Machines
    Mathew, Josey
    Pang, Chee Khiang
    Luo, Ming
    Leong, Weng Hoe
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) : 4065 - 4076