Support vector machines for temporal classification of block design fMRI data

被引:286
|
作者
LaConte, S
Strother, S
Cherkassky, V
Anderson, J
Hu, XP
机构
[1] Emory Univ, Georgia Inst Technol, Atlanta, GA 30322 USA
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
support vector machine; functional magnetic resonance imaging; canonical variates analysis;
D O I
10.1016/j.neuroimage.2005.01.048
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother, S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 1027; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D., 2002. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15, 747-771]. We compare SVM to canonical variates analysis (CVA) by examining the relative sensitivity of each method to ten combinations of preprocessing choices consisting of spatial smoothing, temporal detrending, and motion correction. Important to the discussion are the issues of classification performance, model interpretation, and validation in the context of fMRI. As the SVM has many unique properties, we examine the interpretation of support vector models with respect to neuroimaging data. We propose four methods for extracting activation maps from SVM models, and we examine one of these in detail. For both CVA and SVM, we have classified individual time samples of whole brain data, with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with no averaging of scans or prior feature selection. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 50 条
  • [21] Support Vector Machines with Weighted Powered Kernels for Data Classification
    Afif, Mohammed H.
    Hedar, Abdel-Rahman
    Hamid, Taysir H. Abdel
    Mahdy, Yousef B.
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 : 369 - 378
  • [22] An algorithm to cluster data for efficient classification of support vector machines
    Li, Der-Chiang
    Fang, Yao-Hwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (03) : 2013 - 2018
  • [23] Data classification using support vector machines with mixture kernels
    Wei, Liwei
    Wei, Chuanshen
    Wan, Xiaqing
    NANOTECHNOLOGY AND PRECISION ENGINEERING, PTS 1 AND 2, 2013, 662 : 936 - +
  • [24] Massive Data Classification via Unconstrained Support Vector Machines
    O. L. Mangasarian
    M. E. Thompson
    Journal of Optimization Theory and Applications, 2006, 131 : 315 - 325
  • [25] Hyperspectral data classification using geostatistics and support vector machines
    Bahria, S.
    Essoussi, N.
    Limam, M.
    REMOTE SENSING LETTERS, 2011, 2 (02) : 99 - 106
  • [26] Applications of support vector machines to cancer classification with microarray data
    Chu, F
    Wang, LP
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2005, 15 (06) : 475 - 484
  • [27] Application of Support Vector Machines to Melissopalynological Data for Honey Classification
    Aronne, Giovanna
    De Micco, Veronica
    Guarracino, Mario R.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS, 2010, 1 (02) : 85 - 94
  • [28] LAND COVER CLASSIFICATION BY SUPPORT VECTOR MACHINES USING MULTI-TEMPORAL POLARIMETRIC SAR DATA
    Feng, Qi
    Chen, Er-xue
    Li, Zengyuan
    Guo, Ying
    Zhou, Wei
    Li, Weimei
    Xu, Guangcai
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6244 - 6246
  • [29] The impact of functional connectivity changes on support vector machines mapping of fMRI data
    Sato, Joao Ricardo
    Mourao-Miranda, Janaina
    Morais Martin, Maria da Graca
    Amaro, Edson, Jr.
    Morettin, Pedro Alberto
    Brammer, Michael John
    JOURNAL OF NEUROSCIENCE METHODS, 2008, 172 (01) : 94 - 104
  • [30] Clifford support vector machines for classification
    Bayro-Corrochano, E
    Arana-Daniel, N
    Vallejo-Gutiérres, JR
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 9 - 16