Support vector machines for temporal classification of block design fMRI data

被引:286
|
作者
LaConte, S
Strother, S
Cherkassky, V
Anderson, J
Hu, XP
机构
[1] Emory Univ, Georgia Inst Technol, Atlanta, GA 30322 USA
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
support vector machine; functional magnetic resonance imaging; canonical variates analysis;
D O I
10.1016/j.neuroimage.2005.01.048
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother, S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 1027; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D., 2002. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15, 747-771]. We compare SVM to canonical variates analysis (CVA) by examining the relative sensitivity of each method to ten combinations of preprocessing choices consisting of spatial smoothing, temporal detrending, and motion correction. Important to the discussion are the issues of classification performance, model interpretation, and validation in the context of fMRI. As the SVM has many unique properties, we examine the interpretation of support vector models with respect to neuroimaging data. We propose four methods for extracting activation maps from SVM models, and we examine one of these in detail. For both CVA and SVM, we have classified individual time samples of whole brain data, with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with no averaging of scans or prior feature selection. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 50 条
  • [1] Cognitive states classification from fMRI data using support vector machines
    Ji, Y
    Liu, HB
    Wang, XK
    Tang, YT
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2919 - 2923
  • [2] Support vector machines for classification of hyperspectral data
    Gualtieri, JA
    Chettri, S
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 813 - 815
  • [3] Support vector machine classification of complex fMRI data
    Peltier, Scott J.
    Lisinski, Jonathan M.
    Noll, Douglas C.
    LaConte, Stephen M.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 5381 - +
  • [4] Fusion of support vector machines for classification of multisensor data
    Waske, Bjoern
    Benediktsson, Jo Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12): : 3858 - 3866
  • [5] Classification of fuzzy data based on the support vector machines
    Forghani, Yahya
    Yazdi, Hadi Sadoghi
    Effati, Sohrab
    EXPERT SYSTEMS, 2013, 30 (05) : 403 - 417
  • [6] Data mining with parallel support vector machines for classification
    Eitrich, Tatjana
    Lang, Bruno
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2006, 4243 : 197 - 206
  • [7] Classification of electronic nose data with support vector machines
    Pardo, M
    Sberveglieri, G
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 107 (02): : 730 - 737
  • [8] Resting State fMRI Data Analysis using Support Vector Machines
    Song, Xiaomu
    Chen, Nan-kuei
    2013 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2013,
  • [9] Unsupervised spatiotemporal fMRI data analysis using support vector machines
    Song, Xiaomu
    Wyrwicz, Alice M.
    NEUROIMAGE, 2009, 47 (01) : 204 - 212
  • [10] Effective Functional Mapping of fMRI Data with Support-Vector Machines
    Lee, Sangkyun
    Halder, Sebastian
    Kuebler, Andrea
    Birbaumer, Niels
    Sitaram, Ranganatha
    HUMAN BRAIN MAPPING, 2010, 31 (10) : 1502 - 1511