Phosphorus diffusion in nanocrystalline 3C-SiC

被引:2
|
作者
Schnabel, Manuel [1 ,2 ]
Siddique, Abu Bakr [2 ]
Janz, Stefan [1 ]
Wilshaw, Peter R. [2 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
关键词
HYDROGENATED AMORPHOUS-SILICON; CHEMICAL-VAPOR-DEPOSITION; N-TYPE; CONTACTS;
D O I
10.1063/1.4916637
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phosphorus diffusion in nanocrystalline 3C silicon carbide (nc-SiC) with a grain size of 4-7 nm is studied using polycrystalline silicon (poly-Si) as the phosphorus source. Diffusion is much faster than in monocrystalline SiC and proceeds exclusively via grain boundaries (GBs). The poly-Si deposition step, alone or followed by a 1000 degrees C drive-in step, is sufficient to create a shallow phosphorus profile < 100 nm deep, while drive-in steps above 1100 degrees C lead to phosphorus penetrating the 200 nm thick films and reaching the Si substrate. In the bulk of the films, GB diffusion is Fickian, and thermally activated with an activation energy of 5.2+/-0.3 eV, which is substantially lower than in the monocrystalline case. Boltzmann-Matano analysis corroborates the analysis of the phosphorus profiles in the bulk of the films using error functions and shows that the high near-surface concentrations observed can be explained in terms of a concentration-dependent diffusivity. The concentration dependence is stronger and begins at higher concentrations for higher drive-in temperatures. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] PSEUDOPOTENTIAL CALCULATIONS ON 3C-SIC
    AOURAG, H
    DJELOULI, B
    HAZZAB, A
    KHELIFA, B
    MATERIALS CHEMISTRY AND PHYSICS, 1994, 39 (01) : 34 - 39
  • [32] ZnO growth on 3C-SiC
    Minegishi, Tsutomu
    Narita, Yuzuru
    Tokairin, Shizuka
    Fujimoto, Gakuyo
    Suzuki, Hideyuki
    Vashaei, Zahra
    Sumitani, Kazushi
    Sakata, Osami
    Cho, Meongwhan
    Yao, Takafumi
    Suemitsu, Maki
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (03) : 903 - 907
  • [33] Substitutional Ge in 3C-SiC
    Guedj, C
    Kolodzey, J
    APPLIED PHYSICS LETTERS, 1999, 74 (05) : 691 - 693
  • [34] Thermodynamic properties of 3C-SiC
    Thakore, B. Y.
    Khambholja, S. G.
    Vahora, A. Y.
    Bhatt, N. K.
    Jani, A. R.
    CHINESE PHYSICS B, 2013, 22 (10)
  • [35] EXPERIMENTAL 3C-SIC MOSFET
    KONDO, Y
    TAKAHASHI, T
    ISHII, K
    HAYASHI, Y
    SAKUMA, E
    MISAWA, S
    DAIMON, H
    YAMANAKA, M
    YOSHIDA, S
    IEEE ELECTRON DEVICE LETTERS, 1986, 7 (07) : 404 - 406
  • [36] Growth Kinetics of 3C-SiC on α-SiC by VLS
    Soueidan, M.
    Kim-Hak, O.
    Ferro, G.
    Habka, N.
    Nsouli, B.
    SILICON CARBIDE AND RELATED MATERIALS 2007, PTS 1 AND 2, 2009, 600-603 : 199 - +
  • [37] Thermodynamic properties of 3C-SiC
    B.Y.Thakore
    S.G.Khambholja
    A.Y.Vahora
    N.K.Bhatt
    A.R.Jani
    Chinese Physics B, 2013, (10) : 433 - 439
  • [38] The evolution of cavities in Si at the 3C-SiC/Si interface during 3C-SiC deposition by LPCVD
    Papaioannou, V
    Möller, H
    Rapp, M
    Veoglmeier, L
    Eickhoff, M
    Krötz, G
    Stoemenos, J
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 61-2 : 539 - 543
  • [39] Neutron irradiation and frequency effects on the electrical conductivity of nanocrystalline silicon carbide (3C-SiC)
    Huseynov, Elchin
    PHYSICS LETTERS A, 2016, 380 (38) : 3086 - 3091
  • [40] Study of thermal parameters of nanocrystalline silicon carbide (3C-SiC) using DSC spectroscopy
    Huseynov, Elchin M.
    Naghiyev, Tural G.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (04):