Phosphorus diffusion in nanocrystalline 3C-SiC

被引:2
|
作者
Schnabel, Manuel [1 ,2 ]
Siddique, Abu Bakr [2 ]
Janz, Stefan [1 ]
Wilshaw, Peter R. [2 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
关键词
HYDROGENATED AMORPHOUS-SILICON; CHEMICAL-VAPOR-DEPOSITION; N-TYPE; CONTACTS;
D O I
10.1063/1.4916637
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phosphorus diffusion in nanocrystalline 3C silicon carbide (nc-SiC) with a grain size of 4-7 nm is studied using polycrystalline silicon (poly-Si) as the phosphorus source. Diffusion is much faster than in monocrystalline SiC and proceeds exclusively via grain boundaries (GBs). The poly-Si deposition step, alone or followed by a 1000 degrees C drive-in step, is sufficient to create a shallow phosphorus profile < 100 nm deep, while drive-in steps above 1100 degrees C lead to phosphorus penetrating the 200 nm thick films and reaching the Si substrate. In the bulk of the films, GB diffusion is Fickian, and thermally activated with an activation energy of 5.2+/-0.3 eV, which is substantially lower than in the monocrystalline case. Boltzmann-Matano analysis corroborates the analysis of the phosphorus profiles in the bulk of the films using error functions and shows that the high near-surface concentrations observed can be explained in terms of a concentration-dependent diffusivity. The concentration dependence is stronger and begins at higher concentrations for higher drive-in temperatures. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Anomalous dynamical charge change behavior of nanocrystalline 3C-SiC upon compression
    Liu, HZ
    Jin, CQ
    Chen, JH
    Hu, JZ
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (12) : 2291 - 2293
  • [22] Freestanding 3C-SiC grown by sublimation epitaxy using 3C-SiC templates on silicon
    Hens, P.
    Mueller, J.
    Wagner, G.
    Liljedahl, R.
    Yakimova, R.
    Spiecker, E.
    Wellmann, P.
    Syvajarvi, M.
    SILICON CARBIDE AND RELATED MATERIALS 2011, PTS 1 AND 2, 2012, 717-720 : 177 - +
  • [23] Original 3C-SiC micro-structure on a 3C-SiC pseudo-substrate
    Michaud, J. F.
    Portail, M.
    Chassagne, T.
    Zielinski, M.
    Alquier, D.
    MICROELECTRONIC ENGINEERING, 2013, 105 : 65 - 67
  • [24] Properties of nanocrystalline 3C-SiC:H and SiC:Ge:H films deposited at low substrate temperatures
    Miyajima, Shinsuke
    Yamada, Akira
    Konagai, Makoto
    AMORPHOUS AND POLYCRYSTALLINE THIN-FILM SILICON SCIENCE AND TECHNOLOGY 2006, 2007, 910 : 69 - 77
  • [25] Raman study of amorphization in nanocrystalline 3C-SiC irradiated with C+ and He+ ions
    Zhang, Limin
    Jiang, Weilin
    Pan, Chenglong
    Fadanelli, Raul C.
    Ai, Wensi
    Chen, Liang
    Wang, Tieshan
    JOURNAL OF RAMAN SPECTROSCOPY, 2019, 50 (08) : 1197 - 1204
  • [26] Gold films epitaxially grown by diffusion at the 3C-SiC/Si interface
    Komninou, P
    Stoemenos, J
    Nouet, G
    Karakostas, T
    JOURNAL OF CRYSTAL GROWTH, 1999, 203 (1-2) : 103 - 112
  • [27] Diffusion of gold in 3C-SiC epitaxially grown on Si - Structural characterization
    Kornilios, N
    Constantinidis, G
    Kayiambaki, M
    Zekentes, K
    Stoemenos, J
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 46 (1-3): : 186 - 189
  • [28] On the nanoscaled defects of 3C-SiC
    Mantzari, A.
    Andreadou, A.
    Chandran, N.
    Marinova, M.
    Polychroniadis, E. K.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2014, 11 (5-8) : 539 - 548
  • [29] Gold films epitaxially grown by diffusion at the 3C-SiC/Si interface
    Komninou, Ph.
    Stoemenos, J.
    Nouet, G.
    Karakostas, Th.
    Journal of Crystal Growth, 1999, 203 (01): : 103 - 112
  • [30] Waveguides and modulators in 3C-SiC
    Kewell, A
    Vonsovici, A
    Reed, GT
    Evans, AGR
    SILICON-BASED AND HYBRID OPTOELECTRONICS III, 2001, 4293 : 54 - 62