Phosphorus diffusion in nanocrystalline 3C-SiC

被引:2
|
作者
Schnabel, Manuel [1 ,2 ]
Siddique, Abu Bakr [2 ]
Janz, Stefan [1 ]
Wilshaw, Peter R. [2 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
关键词
HYDROGENATED AMORPHOUS-SILICON; CHEMICAL-VAPOR-DEPOSITION; N-TYPE; CONTACTS;
D O I
10.1063/1.4916637
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phosphorus diffusion in nanocrystalline 3C silicon carbide (nc-SiC) with a grain size of 4-7 nm is studied using polycrystalline silicon (poly-Si) as the phosphorus source. Diffusion is much faster than in monocrystalline SiC and proceeds exclusively via grain boundaries (GBs). The poly-Si deposition step, alone or followed by a 1000 degrees C drive-in step, is sufficient to create a shallow phosphorus profile < 100 nm deep, while drive-in steps above 1100 degrees C lead to phosphorus penetrating the 200 nm thick films and reaching the Si substrate. In the bulk of the films, GB diffusion is Fickian, and thermally activated with an activation energy of 5.2+/-0.3 eV, which is substantially lower than in the monocrystalline case. Boltzmann-Matano analysis corroborates the analysis of the phosphorus profiles in the bulk of the films using error functions and shows that the high near-surface concentrations observed can be explained in terms of a concentration-dependent diffusivity. The concentration dependence is stronger and begins at higher concentrations for higher drive-in temperatures. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Boron diffusion in nanocrystalline 3C-SiC
    Schnabel, Manuel
    Weiss, Charlotte
    Canino, Mariaconcetta
    Rachow, Thomas
    Loeper, Philipp
    Summonte, Caterina
    Mirabella, Salvo
    Janz, Stefan
    Wilshaw, Peter R.
    APPLIED PHYSICS LETTERS, 2014, 104 (21)
  • [2] Boron diffusion in nanocrystalline 3C-SiC (vol 104, 213108, 2014)
    Schnabel, Manuel
    Weiss, Charlotte
    Canino, Mariaconcetta
    Rachow, Thomas
    Loeper, Philipp
    Summonte, Caterina
    Mirabella, Salvo
    Janz, Stefan
    Wilshaw, Peter R.
    APPLIED PHYSICS LETTERS, 2014, 104 (24)
  • [3] Nanocrystalline 3C-SiC Electrode for Biosensing Applications
    Yang, Nianjun
    Zhuang, Hao
    Hoffmann, Rene
    Smirnov, Waldemar
    Hees, Jakob
    Jiang, Xin
    Nebel, Christoph E.
    ANALYTICAL CHEMISTRY, 2011, 83 (15) : 5827 - 5830
  • [5] Photoluminescence properties of nanocrystalline 3C-SiC films
    College of Physics Science and Technology, Hebei University, Baoding 071002, China
    Chin J Aeronaut, 2006, SUPPL. (S215-S219):
  • [6] Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions
    Jiang, W.
    Wang, H.
    Kim, I.
    Zhang, Y.
    Weber, W. J.
    JOURNAL OF MATERIALS RESEARCH, 2010, 25 (12) : 2341 - 2348
  • [7] Selective Growth of Nanocrystalline 3C-SiC Thin Films on Si
    Beke, D.
    Pongracz, A.
    Battistig, G.
    Josepovits, K.
    Pecz, B.
    2010 WIDE BANDGAP CUBIC SEMICONDUCTORS: FROM GROWTH TO DEVICES, 2010, 1292 : 23 - +
  • [8] Nanoscale spatially resolved thermal transport in nanocrystalline 3C-SiC
    Farzadian, Omid
    Sekerbayev, Kairolla
    Wang, Yanwei
    Utegulov, Zhandos N.
    APPLIED PHYSICS LETTERS, 2024, 124 (23)
  • [9] Theoretical study of helium insertion and diffusion in 3C-SiC
    Van Ginhoven, RM
    Chartier, A
    Meis, C
    Weber, WJ
    Corrales, LR
    JOURNAL OF NUCLEAR MATERIALS, 2006, 348 (1-2) : 51 - 59
  • [10] Diffusion of Ag along Σ3 grain boundaries in 3C-SiC
    Khalil, Sarah
    Swaminathan, Narasimhan
    Shrader, David
    Heim, Andrew J.
    Morgan, Dane D.
    Szlufarska, Izabela
    PHYSICAL REVIEW B, 2011, 84 (21)