Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up

被引:2
|
作者
Shi, Jincheng [1 ]
Zhang, Yan [2 ]
Cai, Zihan [3 ]
Liu, Yan [3 ]
机构
[1] Guangzhou Huashang Coll, Coll Data Sci, Huashang Rd, Guangzhou 511300, Peoples R China
[2] Guangdong Teachers Coll Foreign Language & Arts, Dept Appl Math, Longdong East Rd, Guangzhou 510521, Peoples R China
[3] Guangdong Univ Finance, Dept Appl Math, Yingfu Rd, Guangzhou 510521, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
Moore-Gibson-Thompson equation; derivative-type nonlinearity; global existence of small data solution; decay estimate; blow-up; WAVE-EQUATION;
D O I
10.3934/math.2022015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type jutjp. We demonstrate global existence of small data solutions if p > 1 + 4/n (n <= 6) or p >= 2 - 2/n (n >= 7), and blow-up of nontrivial weak solutions if 1 < p <= 1 + 1/n. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by [4].
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [31] NONEXISTENCE OF GLOBAL SOLUTIONS FOR THE SEMILINEAR MOORE - GIBSON - THOMPSON EQUATION IN THE CONSERVATIVE CASE
    Chen, Wenhui
    Palmieri, Alessandro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (09) : 5513 - 5540
  • [32] Global existence for the Jordan–Moore–Gibson–Thompson equation in Besov spaces
    Belkacem Said-Houari
    Journal of Evolution Equations, 2022, 22
  • [33] GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR INFINITELY DEGENERATE SEMILINEAR HYPERBOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY
    Chen, Hua
    Wang, Jing
    Xu, Huiyang
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (11-12) : 639 - 658
  • [34] Global blow-up for a semilinear heat equation on a subspace
    Budd, C. J.
    Dold, J. W.
    Galaktionov, V. A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (05) : 893 - 923
  • [35] Global existence and blow-up for Riccati equation
    Zhang, WN
    DYNAMIC SYSTEMS AND APPLICATIONS, 2003, 12 (3-4): : 251 - 258
  • [36] Global existence and blow-up of solutions for a p-Kirchhoff type parabolic equation with logarithmic nonlinearity
    Khuddush, Mahammad
    Kapula, Rajendra Prasad
    Bharathi, Sa-Botta
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 919 - 938
  • [37] Existence and blow-up of solutions for a degenerate semilinear parabolic equation
    Ran, Yanping
    Peng, Congming
    CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 : 1454 - 1458
  • [38] Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    Abdalla, Mohamed
    Mekawy, Ibrahim
    AIMS MATHEMATICS, 2021, 6 (07): : 7585 - 7624
  • [39] Sharp threshold for blow-up and global existence in a semilinear parabolic equation with variable source
    Yang, Jinge
    Yu, Haixiong
    BOUNDARY VALUE PROBLEMS, 2017,
  • [40] Sharp threshold for blow-up and global existence in a semilinear parabolic equation with variable source
    Jinge Yang
    Haixiong Yu
    Boundary Value Problems, 2017