Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up

被引:2
|
作者
Shi, Jincheng [1 ]
Zhang, Yan [2 ]
Cai, Zihan [3 ]
Liu, Yan [3 ]
机构
[1] Guangzhou Huashang Coll, Coll Data Sci, Huashang Rd, Guangzhou 511300, Peoples R China
[2] Guangdong Teachers Coll Foreign Language & Arts, Dept Appl Math, Longdong East Rd, Guangzhou 510521, Peoples R China
[3] Guangdong Univ Finance, Dept Appl Math, Yingfu Rd, Guangzhou 510521, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
Moore-Gibson-Thompson equation; derivative-type nonlinearity; global existence of small data solution; decay estimate; blow-up; WAVE-EQUATION;
D O I
10.3934/math.2022015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type jutjp. We demonstrate global existence of small data solutions if p > 1 + 4/n (n <= 6) or p >= 2 - 2/n (n >= 7), and blow-up of nontrivial weak solutions if 1 < p <= 1 + 1/n. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by [4].
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条