Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up

被引:2
|
作者
Shi, Jincheng [1 ]
Zhang, Yan [2 ]
Cai, Zihan [3 ]
Liu, Yan [3 ]
机构
[1] Guangzhou Huashang Coll, Coll Data Sci, Huashang Rd, Guangzhou 511300, Peoples R China
[2] Guangdong Teachers Coll Foreign Language & Arts, Dept Appl Math, Longdong East Rd, Guangzhou 510521, Peoples R China
[3] Guangdong Univ Finance, Dept Appl Math, Yingfu Rd, Guangzhou 510521, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
Moore-Gibson-Thompson equation; derivative-type nonlinearity; global existence of small data solution; decay estimate; blow-up; WAVE-EQUATION;
D O I
10.3934/math.2022015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type jutjp. We demonstrate global existence of small data solutions if p > 1 + 4/n (n <= 6) or p >= 2 - 2/n (n >= 7), and blow-up of nontrivial weak solutions if 1 < p <= 1 + 1/n. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by [4].
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [1] Blow-up dynamic of solution to the semilinear Moore-Gibson-Thompson equation with memory terms
    Ming, Sen
    Fan, Xiongmei
    Ren, Cui
    Su, Yeqin
    AIMS MATHEMATICS, 2023, 8 (02): : 4630 - 4644
  • [2] A BLOW - UP RESULT FOR THE SEMILINEAR MOORE - GIBSON - THOMPSON EQUATION WITH NONLINEARITY OF DERIVATIVE TYPE IN THE CONSERVATIVE CASE
    Chen, Wenhui
    Palmieri, Alessandro
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 673 - 687
  • [3] Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations
    Ming, Sen
    Yang, Han
    Fan, Xiongmei
    Yao, Jiangyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62
  • [4] Solution Blow-Up for a Fractional Fourth-Order Equation of Moore-Gibson-Thompson Type with Nonlinearity Nonlocal in Time
    Mesloub, F.
    Merah, A.
    Boulaaras, S.
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 72 - 79
  • [5] Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations
    Ming, Sen
    Yang, Han
    Fan, Xiongmei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) : 10972 - 10992
  • [6] L∞ blow-up in the Jordan-Moore-Gibson-Thompson equation
    Nikolic, Vanja
    Winkler, Michael
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 247
  • [7] BLOW-UP OF SOLUTIONS FOR THE MOORE-GIBSON-THOMPSON EQUATIONS ON EXTERIOR DOMAIN IN TWO DIMENSIONS
    Fan, Xiongmei
    Han, Wei
    Ming, Sen
    Su, Yeqin
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (5-6) : 321 - 346
  • [8] Global existence and blow-up of solutions to a semilinear heat equation with logarithmic nonlinearity
    Peng, Jingmei
    Zhou, Jun
    APPLICABLE ANALYSIS, 2021, 100 (13) : 2804 - 2824
  • [9] Solution Blow-Up for a Fractional Fourth-Order Equation of Moore–Gibson–Thompson Type with Nonlinearity Nonlocal in Time
    F. Mesloub
    A. Merah
    S. Boulaaras
    Mathematical Notes, 2023, 113 : 72 - 79
  • [10] Global Existence and General Decay of Moore-Gibson-Thompson Equation with not Necessarily Decreasing Kernel
    Alaeddine, Draifia
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41