Deep learning on fundus images detects glaucoma beyond the optic disc

被引:35
|
作者
Hemelings, Ruben [1 ,8 ]
Elen, Bart [8 ]
Barbosa-Breda, Joao [1 ,3 ,4 ]
Blaschko, Matthew B. [5 ]
De Boever, Patrick [6 ,7 ,8 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Univ Porto, Cardiovasc R&D Ctr, Fac Med, P-4200319 Porto, Portugal
[4] Ctr Hosp & Univ Sao Jo5o, Dept Ophthalmol, P-4200319 Porto, Portugal
[5] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[7] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[8] Flemish Inst Technol Res VITO, Boeretang 200, B-2400 Mol, Belgium
关键词
FIBER LAYER THICKNESS; DIABETIC-RETINOPATHY; RETINAL IMAGES; IDENTIFICATION; VALIDATION; PREDICTION; DIAGNOSIS;
D O I
10.1038/s41598-021-99605-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R-2) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R-2 score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Identification of glaucoma from fundus images using deep learning techniques
    Ajitha, S.
    Akkara, John D.
    Judy, M., V
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2021, 69 (10) : 2702 - 2709
  • [42] Deep Ensemble Learning for Classification of Glaucoma from Smartphone Fundus Images
    Angara, Sandeep
    Kim, Jongwoo
    [J]. 2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 412 - 417
  • [43] Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning (vol 19, pg 136, 2019)
    Bajwa, Muhammad Naseer
    Malik, Muhammad Imran
    Siddiqui, Shoaib Ahmed
    Dengel, Andreas
    Shafait, Faisal
    Neumeier, Wolfgang
    Ahmed, Sheraz
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)
  • [44] Detection of Optic Disc Abnormalities in Color Fundus Photographs Using Deep Learning
    Liu, T. Y. Alvin
    Wei, Jinchi
    Zhu, Hongxi
    Subramanian, Prem S.
    Myung, David
    Yi, Paul H.
    Hui, Ferdinand K.
    Unberath, Mathias
    Ting, Daniel S. W.
    Miller, Neil R.
    [J]. JOURNAL OF NEURO-OPHTHALMOLOGY, 2021, 41 (03) : 368 - 374
  • [45] Robust optic disc and cup segmentation with deep learning for glaucoma detection
    Yu, Shuang
    Xiao, Di
    Frost, Shaun
    Kanagasingam, Yogesan
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 74 : 61 - 71
  • [46] Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning
    Kim, Jongwoo
    Loc Tran
    Chew, Emily Y.
    Antani, Sameer
    [J]. 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 489 - 494
  • [47] Detection of Glaucoma Progression on Optic Disc Photographs (DP) with Deep Learning
    Mohammadzadeh, Vahid
    Broering, Alex
    Vepa, Arvind
    Pan, Zehao
    Oyler-Yaniv, Alon
    Salazar, Diana
    Nezhad, Golnoush Sadat Mahmoudi
    Martinyan, Jack
    Morales, Esteban
    Caprioli, Joseph
    Scalzo, Fabien
    Nouri-Mahdavi, Kouros
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [48] Optic disc and cup segmentation for glaucoma characterization using deep learning
    Kim, Jongwoo
    Tran, Loc
    Chew, Emily Y.
    Antani, Sameer
    [J]. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2019, 2019-January : 489 - 494
  • [49] Contextual optic disc location in retinal fundus images
    Perez-Rovira, Adria
    Trucco, Emanuele
    [J]. JOURNAL OF MODERN OPTICS, 2010, 57 (02) : 136 - 144
  • [50] A Fast Algorithm for Optic Disc Segmentation in Fundus Images
    Santhakumar, R.
    Rajkumar, E. R.
    Tandur, Megha
    Geetha, K. S.
    Rajamani, Kumar Thirunellai
    Haritz, Girish
    [J]. 2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 716 - 719