Deep learning on fundus images detects glaucoma beyond the optic disc

被引:35
|
作者
Hemelings, Ruben [1 ,8 ]
Elen, Bart [8 ]
Barbosa-Breda, Joao [1 ,3 ,4 ]
Blaschko, Matthew B. [5 ]
De Boever, Patrick [6 ,7 ,8 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Univ Porto, Cardiovasc R&D Ctr, Fac Med, P-4200319 Porto, Portugal
[4] Ctr Hosp & Univ Sao Jo5o, Dept Ophthalmol, P-4200319 Porto, Portugal
[5] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[7] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[8] Flemish Inst Technol Res VITO, Boeretang 200, B-2400 Mol, Belgium
关键词
FIBER LAYER THICKNESS; DIABETIC-RETINOPATHY; RETINAL IMAGES; IDENTIFICATION; VALIDATION; PREDICTION; DIAGNOSIS;
D O I
10.1038/s41598-021-99605-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R-2) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R-2 score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Optic Disc Localization in Fundus Images
    Lesay, Boris
    Pavlovicova, Jarmila
    Oravec, Milos
    Kurilova, Veronika
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 125 - 128
  • [22] Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning
    Shaleen Bengani
    Angel Arul Jothi J.
    Vadivel S.
    [J]. Multimedia Tools and Applications, 2021, 80 : 3443 - 3468
  • [23] Assessing Coarse-to-Fine Deep Learning Models for Optic Disc and Cup Segmentation in Fundus Images
    Moris, Eugenia
    Dazeo, Nicolas
    Albina de Rueda, Maria Paula
    Filizzola, Francisco
    Iannuzzo, Nicolas
    Nejamkin, Danila
    Wignall, Kevin
    Leguia, Mercedes
    Larrabide, Ignacio
    Ignacio Orlando, Jose
    [J]. 18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [24] Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning
    Bengani, Shaleen
    Jothi, Angel Arul J.
    Vadivel, S.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (03) : 3443 - 3468
  • [25] Automated Extraction of Optic Disc Regions from Fundus Images for Preperimetric Glaucoma Diagnosis
    Park, Ji Sang
    Cho, Hyeon Sung
    Cho, Jae Il
    [J]. 2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 1107 - 1110
  • [26] Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images
    de la Fuente-Arriaga, Jose Abel
    Felipe-Riveron, Edgardo M.
    Garduno-Calderon, Eduardo
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 47 : 27 - 35
  • [27] Optic Disc Image Subtraction Detects Glaucoma Progression
    Amini, Navid
    Alizadeh, Reza
    Parivisutt, Nucharee
    Kim, Eun-Ah
    Nouri-Mahdavi, Kouros
    Caprioli, Joseph
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [28] Deep level set method for optic disc and cup segmentation on fundus images
    Zheng, Yaoyue
    Zhang, Xuetao
    Xu, Xiayu
    Tian, Zhiqiang
    Du, Shaoyi
    [J]. BIOMEDICAL OPTICS EXPRESS, 2021, 12 (11): : 6969 - 6983
  • [29] Segmentation of Optic Disc from Fundus images
    Elbalaoui, A.
    Ouadid, Y.
    Fakir, M.
    [J]. PROCEEDINGS 2018 INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES AND ENGINEERING (ICCSE), 2018,
  • [30] Localization of Optic Disc in Color Fundus Images
    Joshi, Shilpa
    Karule, P. T.
    [J]. WIRELESS NETWORKS AND COMPUTATIONAL INTELLIGENCE, ICIP 2012, 2012, 292 : 178 - 186