Deep learning on fundus images detects glaucoma beyond the optic disc

被引:35
|
作者
Hemelings, Ruben [1 ,8 ]
Elen, Bart [8 ]
Barbosa-Breda, Joao [1 ,3 ,4 ]
Blaschko, Matthew B. [5 ]
De Boever, Patrick [6 ,7 ,8 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Univ Porto, Cardiovasc R&D Ctr, Fac Med, P-4200319 Porto, Portugal
[4] Ctr Hosp & Univ Sao Jo5o, Dept Ophthalmol, P-4200319 Porto, Portugal
[5] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[7] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[8] Flemish Inst Technol Res VITO, Boeretang 200, B-2400 Mol, Belgium
关键词
FIBER LAYER THICKNESS; DIABETIC-RETINOPATHY; RETINAL IMAGES; IDENTIFICATION; VALIDATION; PREDICTION; DIAGNOSIS;
D O I
10.1038/s41598-021-99605-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R-2) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R-2 score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    [J]. Scientific Reports, 11
  • [2] Author Correction: Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    [J]. Scientific Reports, 13
  • [3] Deep learning on fundus images detects glaucoma beyond the optic disc (vol 11, 20313, 2021)
    Hemelings, Ruben
    Elen, Bart
    Barbosa-Breda, Joao
    Blaschko, Matthew B.
    De Boever, Patrick
    Stalmans, Ingeborg
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Optic Disc Segmentation in Fundus Images Using Deep Learning
    Kim, Jongwoo
    Tran, Loc
    Chew, Emily Y.
    Antani, Sameer
    Thoma, George R.
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [5] Optic Disc Detection via Deep Learning in Fundus Images
    Xu, Peiyuan
    Wan, Cheng
    Cheng, Jun
    Niu, Di
    Liu, Jiang
    [J]. FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 134 - 141
  • [6] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Jahanzaib Latif
    Shanshan Tu
    Chuangbai Xiao
    Sadaqat Ur Rehman
    Azhar Imran
    Yousaf Latif
    [J]. SN Applied Sciences, 2022, 4
  • [7] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Latif, Jahanzaib
    Tu, Shanshan
    Xiao, Chuangbai
    Rehman, Sadaqat Ur
    Imran, Azhar
    Latif, Yousaf
    [J]. SN APPLIED SCIENCES, 2022, 4 (04):
  • [8] Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images
    Bozic-Stulic, Dunja
    Braovic, Maja
    Stipanicev, Darko
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2020, 11 (02) : 111 - 120
  • [9] Automatic Localization of Optic Disc Based on Deep Learning in Fundus Images
    Niu, Di
    Xu, Peiyuan
    Wan, Cheng
    Cheng, Jun
    Liu, Jiang
    [J]. 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2017, : 208 - 212
  • [10] Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images
    Sreng, Syna
    Maneerat, Noppadol
    Hamamoto, Kazuhiko
    Win, Khin Yadanar
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (14):