Deep learning on fundus images detects glaucoma beyond the optic disc

被引:35
|
作者
Hemelings, Ruben [1 ,8 ]
Elen, Bart [8 ]
Barbosa-Breda, Joao [1 ,3 ,4 ]
Blaschko, Matthew B. [5 ]
De Boever, Patrick [6 ,7 ,8 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Grp Ophthalmol, Dept Neurosci, Herestr 49, B-3000 Leuven, Belgium
[2] UZ Leuven, Ophthalmol Dept, Herestr 49, B-3000 Leuven, Belgium
[3] Univ Porto, Cardiovasc R&D Ctr, Fac Med, P-4200319 Porto, Portugal
[4] Ctr Hosp & Univ Sao Jo5o, Dept Ophthalmol, P-4200319 Porto, Portugal
[5] Katholieke Univ Leuven, ESAT PSI, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[7] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[8] Flemish Inst Technol Res VITO, Boeretang 200, B-2400 Mol, Belgium
关键词
FIBER LAYER THICKNESS; DIABETIC-RETINOPATHY; RETINAL IMAGES; IDENTIFICATION; VALIDATION; PREDICTION; DIAGNOSIS;
D O I
10.1038/s41598-021-99605-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although unprecedented sensitivity and specificity values are reported, recent glaucoma detection deep learning models lack in decision transparency. Here, we propose a methodology that advances explainable deep learning in the field of glaucoma detection and vertical cup-disc ratio (VCDR), an important risk factor. We trained and evaluated deep learning models using fundus images that underwent a certain cropping policy. We defined the crop radius as a percentage of image size, centered on the optic nerve head (ONH), with an equidistant spaced range from 10-60% (ONH crop policy). The inverse of the cropping mask was also applied (periphery crop policy). Trained models using original images resulted in an area under the curve (AUC) of 0.94 [95% CI 0.92-0.96] for glaucoma detection, and a coefficient of determination (R-2) equal to 77% [95% CI 0.77-0.79] for VCDR estimation. Models that were trained on images with absence of the ONH are still able to obtain significant performance (0.88 [95% CI 0.85-0.90] AUC for glaucoma detection and 37% [95% CI 0.35-0.40] R-2 score for VCDR estimation in the most extreme setup of 60% ONH crop). Our findings provide the first irrefutable evidence that deep learning can detect glaucoma from fundus image regions outside the ONH.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    Scientific Reports, 11
  • [2] Author Correction: Deep learning on fundus images detects glaucoma beyond the optic disc
    Ruben Hemelings
    Bart Elen
    João Barbosa-Breda
    Matthew B. Blaschko
    Patrick De Boever
    Ingeborg Stalmans
    Scientific Reports, 13
  • [3] Deep learning on fundus images detects glaucoma beyond the optic disc (vol 11, 20313, 2021)
    Hemelings, Ruben
    Elen, Bart
    Barbosa-Breda, Joao
    Blaschko, Matthew B.
    De Boever, Patrick
    Stalmans, Ingeborg
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [4] Optic Disc Segmentation in Fundus Images Using Deep Learning
    Kim, Jongwoo
    Tran, Loc
    Chew, Emily Y.
    Antani, Sameer
    Thoma, George R.
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [5] Optic Disc Detection via Deep Learning in Fundus Images
    Xu, Peiyuan
    Wan, Cheng
    Cheng, Jun
    Niu, Di
    Liu, Jiang
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 134 - 141
  • [6] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Jahanzaib Latif
    Shanshan Tu
    Chuangbai Xiao
    Sadaqat Ur Rehman
    Azhar Imran
    Yousaf Latif
    SN Applied Sciences, 2022, 4
  • [7] ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images
    Latif, Jahanzaib
    Tu, Shanshan
    Xiao, Chuangbai
    Rehman, Sadaqat Ur
    Imran, Azhar
    Latif, Yousaf
    SN APPLIED SCIENCES, 2022, 4 (04):
  • [8] Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images
    Bozic-Stulic, Dunja
    Braovic, Maja
    Stipanicev, Darko
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2020, 11 (02) : 111 - 120
  • [9] Automatic Localization of Optic Disc Based on Deep Learning in Fundus Images
    Niu, Di
    Xu, Peiyuan
    Wan, Cheng
    Cheng, Jun
    Liu, Jiang
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2017, : 208 - 212
  • [10] Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images
    Sreng, Syna
    Maneerat, Noppadol
    Hamamoto, Kazuhiko
    Win, Khin Yadanar
    APPLIED SCIENCES-BASEL, 2020, 10 (14):