Interfacial Friction Anisotropy in Few-Layer Van der Waals Crystals

被引:5
|
作者
Wang, Kaibo
Li, Hao
Guo, Yufeng [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional crystals; friction anisotropy; pressure; thickness; first-principles calculations; SUPERLUBRICITY; NANOSCALE; GRAPHENE;
D O I
10.3390/ma14164717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Friction anisotropy is one of the important friction behaviors for two-dimensional (2D) van der Waals (vdW) crystals. The effects of normal pressure and thickness on the interfacial friction anisotropy in few-layer graphene, h-BN, and MoSe2 under constant normal force mode have been extensively investigated by first-principle calculations. The increase of normal pressure and layer number enhances the interfacial friction anisotropy for graphene and h-BN but weakens that for MoSe2. Such significant deviations in the interfacial friction anisotropy of few-layer graphene, h-BN and MoSe2 can be mainly attributed to the opposite contributions of electron kinetic energies and electrostatic energies to the sliding energy barriers and different interlayer charge exchanges. Our results deepen the understanding of the influence of external loading and thickness on the friction properties of 2D vdW crystals.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Resonant Tunneling between Quantized Subbands in van der Waals Double Quantum Well Structure Based on Few-Layer WSe2
    Kinoshita, Kei
    Moriya, Rai
    Okazaki, Shota
    Zhang, Yijin
    Masubuchi, Satoru
    Watanabe, Kenji
    Taniguchi, Takashi
    Sasagawa, Takao
    Machida, Tomoki
    NANO LETTERS, 2022, 22 (12) : 4640 - 4645
  • [32] van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single -Crystalline Few -Layer Gray Arsenic Nanoflakes
    Hu, Yi
    Qi, Zheng-Hang
    Lu, Jingyu
    Chen, Renpeng
    Zou, Mingzhi
    Chen, Tao
    Zhang, Wenjun
    Wang, Yanrong
    Xue, Xiaolan
    Ma, Jing
    Jin, Zhong
    CHEMISTRY OF MATERIALS, 2019, 31 (12) : 4524 - 4535
  • [33] Colloidal crystals: A van der Waals approach
    Baus, M
    Coussaert, T
    Achrayah, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 232 (3-4) : 575 - 584
  • [34] Laser Tuning in van der Waals Crystals
    Zheng, Wei
    Li, Fadi
    Li, Guo
    Liang, Yufeng
    Ji, Xu
    Yang, Fan
    Zhang, Zhaojun
    Huang, Feng
    ACS NANO, 2018, 12 (02) : 2001 - 2007
  • [35] Image polaritons in van der Waals crystals
    Menabde, Sergey G.
    Heiden, Jacob T.
    Cox, Joel D.
    Mortensen, N. Asger
    Jang, Min Seok
    NANOPHOTONICS, 2022, 11 (11) : 2433 - 2452
  • [36] Controlling the anisotropy of a van der Waals antiferromagnet with light
    Afanasiev, Dmytro
    Hortensius, Jorrit R.
    Matthiesen, Mattias
    Manas-Valero, Samuel
    Siskins, Makars
    Lee, Martin
    Lesne, Edouard
    van Der Zant, Herre S. J.
    Steeneken, Peter G.
    Ivanov, Boris A.
    Coronado, Eugenio
    Caviglia, Andrea D.
    SCIENCE ADVANCES, 2021, 7 (23)
  • [37] Optical Identification of Few-Layer Antimonene Crystals
    Ares, Pablo
    Zamora, Felix
    Gomez-Herrero, Julio
    ACS PHOTONICS, 2017, 4 (03): : 600 - 605
  • [38] Controlling friction by adjusting van der Waals forces
    不详
    INTERNATIONAL SUGAR JOURNAL, 2013, 115 (1377): : 615 - 615
  • [39] Quantum field theory of van der Waals friction
    Volokitin, A. I.
    Persson, B. N. J.
    PHYSICAL REVIEW B, 2006, 74 (20)
  • [40] Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus
    Tao, Jin
    Shen, Wanfu
    Wu, Sen
    Liu, Lu
    Feng, Zhihong
    Wang, Chao
    Hu, Chunguang
    Yao, Pei
    Zhang, Hao
    Pang, Wei
    Duan, Xuexin
    Liu, Jing
    Zhou, Chongwu
    Zhang, Daihua
    ACS NANO, 2015, 9 (11) : 11362 - 11370