Anisotropic Mesh Adaptation for Solution of Finite Element Problems Using Hierarchical Edge-Based Error Estimates

被引:5
|
作者
Agouzal, Abdellatif [1 ]
Lipnikov, Konstantin [2 ]
Vassilevski, Yuri [3 ]
机构
[1] Univ Lyon 1, Anal Numer Lab, F-69622 Villeurbanne, France
[2] Div Theoret, Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Inst Numer Math, Moscow, Russia
关键词
D O I
10.1007/978-3-642-04319-2_34
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N-h triangles, the error is proportional to N-h(-1) and the gradient of error is proportional to N-h(-1/2) which are the optimal asymptotics. The methodology is verified with numerical experiments.
引用
收藏
页码:595 / +
页数:3
相关论文
共 50 条
  • [31] Exploring three-dimensional edge-based smoothed finite element method based on polyhedral mesh to study elastic mechanics problems
    Yang J.
    Xie W.
    Zhang Z.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2021, 39 (04): : 747 - 752
  • [32] Anisotropic variational mesh adaptation for embedded finite element methods
    Rahmani, Saman
    Baiges, Joan
    Principe, Javier
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [33] On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation
    Hachem, E.
    Jannoun, G.
    Veysset, J.
    Coupez, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 581 - 594
  • [34] L2-ERROR ESTIMATES FOR DIRICHLET AND NEUMANN PROBLEMS ON ANISOTROPIC FINITE ELEMENT MESHES
    Apel, Thomas
    Sirch, Dieter
    APPLICATIONS OF MATHEMATICS, 2011, 56 (02) : 177 - 206
  • [35] L2-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes
    Thomas Apel
    Dieter Sirch
    Applications of Mathematics, 2011, 56
  • [36] Edge-based finite element techniques for non-linear solid mechanics problems
    Coutinho, ALGA
    Martins, MAD
    Alves, JLD
    Landau, L
    Moraes, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (09) : 2053 - 2068
  • [37] Finite Element Method simulations of linear and nonlinear elasticity problems with error control and mesh adaptation
    Rachowicz, W.
    Zdunek, A.
    Cecot, W.
    ADVANCES IN MECHANICS: THEORETICAL, COMPUTATIONAL AND INTERDISCIPLINARY ISSUES, 2016, : 47 - 59
  • [38] Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions
    Feistauer, M
    Najzar, K
    Sobotíková, V
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1999, 20 (9-10) : 835 - 851
  • [39] FINITE ELEMENT ERROR ESTIMATES FOR NONLINEAR CONVECTIVE PROBLEMS
    Kucera, Vaclav
    ALGORITMY 2012, 2012, : 382 - 392
  • [40] Finite element error estimates for nonlinear convective problems
    Kucera, Vaclav
    JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (03) : 143 - 165