Anisotropic Mesh Adaptation for Solution of Finite Element Problems Using Hierarchical Edge-Based Error Estimates

被引:5
|
作者
Agouzal, Abdellatif [1 ]
Lipnikov, Konstantin [2 ]
Vassilevski, Yuri [3 ]
机构
[1] Univ Lyon 1, Anal Numer Lab, F-69622 Villeurbanne, France
[2] Div Theoret, Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Inst Numer Math, Moscow, Russia
关键词
D O I
10.1007/978-3-642-04319-2_34
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N-h triangles, the error is proportional to N-h(-1) and the gradient of error is proportional to N-h(-1/2) which are the optimal asymptotics. The methodology is verified with numerical experiments.
引用
收藏
页码:595 / +
页数:3
相关论文
共 50 条
  • [21] Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method
    Chen, Haodong
    Wang, Qingsong
    Liu, G. R.
    Wang, Yu
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 115 : 123 - 134
  • [22] Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method
    Xiao, Tiaojie
    Liu, Yun
    Wang, Yun
    Fu, Li-Yun
    JOURNAL OF APPLIED GEOPHYSICS, 2018, 149 : 1 - 9
  • [23] Analysis of elastic-plastic problems using edge-based smoothed finite element method
    Cui, X. Y.
    Liu, G. R.
    Li, G. Y.
    Zhang, G. Y.
    Sun, G. Y.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2009, 86 (10) : 711 - 718
  • [24] Anisotropic mesh adaptation for continuous finite element discretization through mesh optimization via error sampling and synthesis
    Carson, Hugh A.
    Huang, Arthur C.
    Galbraith, Marshall C.
    Allmaras, Steven R.
    Darmofal, David L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 420
  • [25] Coupled edge-based smoothing finite element method for structural acoustic problems
    He, Zhicheng
    Li, Guangyao
    Cheng, Aiguo
    Zhong, Zhihua
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2014, 50 (04): : 113 - 119
  • [26] Edge-based finite element for nonlinear solid mechanics and unsteady transport problems
    Coutinho, ALGA
    Alves, JLD
    Martins, MAD
    de Souza, DAF
    COMPUTATIONAL BALLISTICS, 2003, : 73 - 81
  • [27] Fast multigrid solution method for nested edge-based finite element meshes
    Cingoski, V
    Tokuda, R
    Noguchi, S
    Yamashita, H
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1539 - 1542
  • [28] 3D CSAMT modelling in anisotropic media using edge-based finite-element method
    He, Guoli
    Xiao, Tiaojie
    Wang, Yun
    Wang, Guangjie
    EXPLORATION GEOPHYSICS, 2019, 50 (01) : 42 - 56
  • [29] A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU
    Cai, Yong
    Cui, Xiangyang
    Li, Guangyao
    Liu, Wenyang
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 225 : 47 - 58
  • [30] Analysis of transient thermo-elastic problems using edge-based smoothed finite element method
    Feng, S. Z.
    Cui, X. Y.
    Li, G. Y.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 65 : 127 - 135