A finite mass based method for Vlasov-Poisson simulations

被引:4
|
作者
Larson, David J. [1 ]
Young, Christopher V. [2 ]
机构
[1] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA
[2] Stanford Univ, Stanford Plasma Phys Lab, Stanford, CA 94305 USA
关键词
Plasma simulation; Particle method; Vlasov equation; Remapping; Shape function; Compact support; PARTICLE-IN-CELL; MODEL; EQUATIONS; PLASMAS; FORCE; SIZE;
D O I
10.1016/j.jcp.2014.12.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method for the numerical simulation of plasma dynamics using discrete particles is introduced. The shape function kinetics (SFK) method is based on decomposing the mass into discrete particles using shape functions of compact support. The particle positions and shape evolve in response to internal velocity spread and external forces. Remapping is necessary in order to maintain accuracy and two strategies for remapping the particles are discussed. Numerical simulations of standard test problems illustrate the advantages of the method which include very low noise compared to the standard particle-in-cell technique, inherent positivity, large dynamic range, and ease of implementation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [41] THE ENERGY CONSERVATION OF VLASOV-POISSON SYSTEMS
    吴景鹏
    张显文
    Acta Mathematica Scientia, 2023, 43 (02) : 668 - 674
  • [42] Sparse Grids for the Vlasov-Poisson Equation
    Kormann, Katharina
    Sonnendruecker, Eric
    SPARSE GRIDS AND APPLICATIONS - STUTTGART 2014, 2016, 109 : 163 - 190
  • [43] The Vlasov-Poisson system with radiation damping
    Kunze, M
    Rendall, AD
    ANNALES HENRI POINCARE, 2001, 2 (05): : 857 - 886
  • [44] Fluctuations and control in the Vlasov-Poisson equation
    Lima, Ricardo
    Mendes, R. Vilela
    PHYSICS LETTERS A, 2007, 368 (1-2) : 87 - 91
  • [45] Functional solutions for the Vlasov-Poisson system
    Carrillo, JA
    Soler, J
    APPLIED MATHEMATICS LETTERS, 1997, 10 (01) : 45 - 50
  • [46] The gyrokinetic approximation for the Vlasov-Poisson system
    Saint-Raymond, L
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (09): : 1305 - 1332
  • [47] FOCUSING SOLUTIONS OF THE VLASOV-POISSON SYSTEM
    Zhang, Katherine Zhiyuan
    KINETIC AND RELATED MODELS, 2019, 12 (06) : 1313 - 1327
  • [48] An inverse problem for the Vlasov-Poisson system
    Golgeleyen, Fikret
    Yamamoto, Masahiro
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (04): : 363 - 372
  • [49] Traveling waves of the Vlasov-Poisson system
    Suzuki, Masahiro
    Takayama, Masahiro
    Zhang, Katherine Zhiyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 : 230 - 290
  • [50] Integer lattice dynamics for Vlasov-Poisson
    Mocz, Philip
    Succi, Sauro
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (03) : 3154 - 3162