A finite mass based method for Vlasov-Poisson simulations

被引:4
|
作者
Larson, David J. [1 ]
Young, Christopher V. [2 ]
机构
[1] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA
[2] Stanford Univ, Stanford Plasma Phys Lab, Stanford, CA 94305 USA
关键词
Plasma simulation; Particle method; Vlasov equation; Remapping; Shape function; Compact support; PARTICLE-IN-CELL; MODEL; EQUATIONS; PLASMAS; FORCE; SIZE;
D O I
10.1016/j.jcp.2014.12.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method for the numerical simulation of plasma dynamics using discrete particles is introduced. The shape function kinetics (SFK) method is based on decomposing the mass into discrete particles using shape functions of compact support. The particle positions and shape evolve in response to internal velocity spread and external forces. Remapping is necessary in order to maintain accuracy and two strategies for remapping the particles are discussed. Numerical simulations of standard test problems illustrate the advantages of the method which include very low noise compared to the standard particle-in-cell technique, inherent positivity, large dynamic range, and ease of implementation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [21] A dynamical adaptive tensor method for the Vlasov-Poisson system
    Ehrlacher, Virginie
    Lombardi, Damiano
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 339 : 285 - 306
  • [22] SYMMETRIZATION OF VLASOV-POISSON EQUATIONS
    Despres, Bruno
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 2554 - 2580
  • [23] The FARSIGHT Vlasov-Poisson code
    Sandberg, Ryan T.
    Krasny, Robert
    Thomas, Alexander G. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [24] On the singularity of the Vlasov-Poisson system
    Zheng, Jian
    Qin, Hong
    PHYSICS OF PLASMAS, 2013, 20 (09)
  • [25] A numerical method for solving the Vlasov-Poisson equation based on the conservative IDO scheme
    Imadera, Kenji
    Kishimoto, Yasuaki
    Saita, Daisuke
    Li, Jiquan
    Utsumi, Jakayuki
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8919 - 8943
  • [26] Absence of recurrence in Fourier-Fourier transformed Vlasov-Poisson simulations
    Klimas, Alexander J.
    Vinas, Adolfo. F.
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (04)
  • [27] Using linear multistep methods for the time stepping in Vlasov-Poisson simulations
    Lorenzon, Denis
    Elaskar, Sergio
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [28] Quantum-inspired method for solving the Vlasov-Poisson equations
    Ye, Erika
    Loureiro, Nuno F. G.
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [29] Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov-Poisson simulations
    Acebron, Juan A.
    Rodriguez-Rozas, Angel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 224 - 245
  • [30] STATIONARY SOLUTIONS OF VLASOV-POISSON EQUATIONS
    POUPAUD, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (06): : 307 - 312