A finite mass based method for Vlasov-Poisson simulations

被引:4
|
作者
Larson, David J. [1 ]
Young, Christopher V. [2 ]
机构
[1] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA
[2] Stanford Univ, Stanford Plasma Phys Lab, Stanford, CA 94305 USA
关键词
Plasma simulation; Particle method; Vlasov equation; Remapping; Shape function; Compact support; PARTICLE-IN-CELL; MODEL; EQUATIONS; PLASMAS; FORCE; SIZE;
D O I
10.1016/j.jcp.2014.12.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method for the numerical simulation of plasma dynamics using discrete particles is introduced. The shape function kinetics (SFK) method is based on decomposing the mass into discrete particles using shape functions of compact support. The particle positions and shape evolve in response to internal velocity spread and external forces. Remapping is necessary in order to maintain accuracy and two strategies for remapping the particles are discussed. Numerical simulations of standard test problems illustrate the advantages of the method which include very low noise compared to the standard particle-in-cell technique, inherent positivity, large dynamic range, and ease of implementation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [1] Recurrence Phenomenon for Vlasov-Poisson Simulations on Regular Finite Element Mesh
    Mehrenberger, Michel
    Navoret, Laurent
    Pham, Nhung
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 877 - 901
  • [2] Perturbation method for the Vlasov-Poisson system
    Lulea Univ of Technology, Lulea, Sweden
    J Plasma Phys, pt 1 (181-192):
  • [3] Vlasov-Poisson: The waterbag method revisited
    Colombi, Stephane
    Touma, Jihad
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (01) : 46 - 52
  • [4] A perturbation method for the Vlasov-Poisson system
    Lundberg, J
    Fla, T
    JOURNAL OF PLASMA PHYSICS, 1998, 60 : 181 - 192
  • [5] The Vlasov-Poisson system with infinite mass and energy
    Jagin, PE
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) : 1107 - 1123
  • [6] Collisional effects on the numerical recurrence in Vlasov-Poisson simulations
    Pezzi, Oreste
    Camporeale, Enrico
    Valentini, Francesco
    PHYSICS OF PLASMAS, 2016, 23 (02)
  • [7] ANALYSIS OF VELOCITY DIFFUSION OF ELECTRONS WITH VLASOV-POISSON SIMULATIONS
    BERNDTSON, JT
    HEIKKINEN, JA
    KARTTUNEN, SJ
    PATTIKANGAS, TJH
    SALOMAA, RRE
    PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (01) : 57 - 71
  • [8] Noiseless Vlasov-Poisson simulations with linearly transformed particles
    Pinto, Martin Campos
    Sonnendruecker, Eric
    Friedman, Alex
    Grote, David P.
    Lund, Steve M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 236 - 256
  • [9] An interpolating particle method for the Vlasov-Poisson equation
    Wilhelm, R. Paul
    Kirchhart, Matthias
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [10] A discontinuous Galerkin method for the Vlasov-Poisson system
    Heath, R. E.
    Gamba, I. M.
    Morrison, P. J.
    Michler, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1140 - 1174