Triangular Ising antiferromagnet: Boundary conditions, ground state entropy, and vortices

被引:5
|
作者
Millane, R. P. [1 ]
Clare, R. M. [1 ]
机构
[1] Univ Canterbury, Computat Imaging Grp, Dept Elect & Comp Engn, Christchurch 1, New Zealand
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevE.74.051101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ground state entropy density of the triangular Ising antiferromagnet is considered as a function of boundary conditions on domains for which the ground states do not admit a dimer covering. These domains admit a rich set of ground states that cannot be classified in the usual way in terms of nonintersecting strings. Various parametrized boundary conditions and domain shapes are identified that allow the ground state entropy density to be varied between zero and maximal degeneracy. The dependence of degeneracy on boundary spins and/or domain shape is interpreted in terms of strings that are not restricted to be nonintersecting.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Ground state entropy of the Potts antiferromagnet on homeomorphic expansions of kagome lattice strips
    Shrock, Robert
    Xu, Yan
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [42] Ground-state entropy of the square-lattice Q-state Potts antiferromagnet
    Kim, Seung-Yeon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (03) : 551 - 556
  • [43] Possible Ground States and Magnetic-Field-Tuned Phase Transitions of a Geometrically Frustrated Ising Antiferromagnet on a Triangular Lattice
    Pham, Thao Huong
    IEEE MAGNETICS LETTERS, 2023, 14
  • [44] Low-temperature metastable states in a stacked triangular Ising antiferromagnet
    Zukovic, M.
    Mizisin, L.
    Bobak, A.
    PHYSICS LETTERS A, 2012, 376 (21) : 1731 - 1735
  • [45] Ground-State Structures of the Ising Model on a Layered Triangular Lattice in a Magnetic Field
    M. K. Badiev
    A. K. Murtazaev
    M. K. Ramazanov
    M. A. Magomedov
    Journal of Experimental and Theoretical Physics, 2022, 134 : 644 - 649
  • [46] Phase transition of a triangular lattice Ising antiferromagnet FeI2
    Katsumata, K.
    Katori, H. Aruga
    Kimura, S.
    Narumi, Y.
    Hagiwara, M.
    Kindo, K.
    PHYSICAL REVIEW B, 2010, 82 (10)
  • [47] Random Ising antiferromagnet on Bethe-like lattices with triangular loops
    Yokota, Terufumi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 : 270 - 275
  • [48] ANTIFERROMAGNETIC TRIANGULAR ISING-MODEL - CRITICAL-BEHAVIOR OF THE GROUND-STATE
    BLOTE, HWJ
    NIGHTINGALE, MP
    PHYSICAL REVIEW B, 1993, 47 (22): : 15046 - 15059
  • [49] Ordering in Triangular Lattice Ising Antiferromagnet Due to Dilution and Magnetic Field
    Zukovic, M.
    Borovsky, M.
    Bobak, A.
    ACTA PHYSICA POLONICA A, 2010, 118 (05) : 740 - 741
  • [50] Critical properties of a spin-1 triangular lattice ising antiferromagnet
    Milan Žukovič
    Andrej Bobák
    Journal of the Korean Physical Society, 2013, 62 : 1495 - 1498