Triangular Ising antiferromagnet: Boundary conditions, ground state entropy, and vortices

被引:5
|
作者
Millane, R. P. [1 ]
Clare, R. M. [1 ]
机构
[1] Univ Canterbury, Computat Imaging Grp, Dept Elect & Comp Engn, Christchurch 1, New Zealand
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevE.74.051101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ground state entropy density of the triangular Ising antiferromagnet is considered as a function of boundary conditions on domains for which the ground states do not admit a dimer covering. These domains admit a rich set of ground states that cannot be classified in the usual way in terms of nonintersecting strings. Various parametrized boundary conditions and domain shapes are identified that allow the ground state entropy density to be varied between zero and maximal degeneracy. The dependence of degeneracy on boundary spins and/or domain shape is interpreted in terms of strings that are not restricted to be nonintersecting.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Magnetization and Susceptibility of a Diluted Triangular Ising Antiferromagnet in a Field
    Borovsky, M.
    Zukovic, M.
    Bobak, A.
    ACTA PHYSICA POLONICA A, 2014, 126 (01) : 16 - 17
  • [22] Solving the triangular Ising antiferromagnet by simple mean field
    S. Galam
    P.V. Koseleff
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 28 : 149 - 155
  • [23] ON THE GROUND-STATE PROPERTIES OF THE ISING ANTIFERROMAGNET WITH GENERAL SPIN ON THE HONEYCOMB LATTICE
    HAJDUKOVIC, D
    MIJATOVIC, M
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1984, 126 (01): : K33 - K35
  • [24] Ising antiferromagnet in the critical magnetic field on square lattice with free boundary conditions
    Kim, Seung-Yeon
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 546 - 551
  • [25] Magnetic ground state of the Ising-like antiferromagnet DyScO3
    Wu, L. S.
    Nikitin, S. E.
    Frontzek, M.
    Kolesnikov, A. I.
    Ehlers, G.
    Lumsden, M. D.
    Shaykhutdinov, K. A.
    Guo, E. -J.
    Savici, A. T.
    Gai, Z.
    Sefat, A. S.
    Podlesnyak, A.
    PHYSICAL REVIEW B, 2017, 96 (14)
  • [26] GROUND-STATE OF TRIANGULAR HEISENBERG-ANTIFERROMAGNET WITH A GENERAL BOSE TRANSFORMATION
    WEI, CG
    TAO, RB
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1994, 22 (02) : 161 - 166
  • [27] Ground state properties of the S=1/2 Heisenberg antiferromagnet on the triangular lattice
    Capriotti, L
    Trumper, AE
    Sorella, S
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) : 7046 - 7048
  • [28] Ground-state entropy of the Potts antiferromagnet on cyclic strip graphs
    Shrock, R
    Tsai, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (17): : L195 - L200
  • [29] Ground state entropy and the q=3 Potts antiferromagnet on the honeycomb lattice
    Shrock, R
    Tsai, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02): : 495 - 500
  • [30] Monte Carlo study of a compressible Ising antiferromagnet on a triangular lattice
    Gu, L
    Chakraborty, B
    PHYSICAL REVIEW B, 1996, 53 (18): : 11985 - 11992