Optimizing the frame duration for data-driven rigid motion estimation in brain PET imaging
被引:11
|
作者:
Spangler-Bickell, Matthew G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Radiol, Madison, WI 53706 USA
GE Healthcare, PET MR Engn, Waukesha, WI 53188 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Spangler-Bickell, Matthew G.
[1
,2
]
Hurley, Samuel A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Radiol, Madison, WI 53706 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Hurley, Samuel A.
[1
]
Deller, Timothy W.
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, PET MR Engn, Waukesha, WI 53188 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Deller, Timothy W.
[2
]
Jansen, Floris
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, PET MR Engn, Waukesha, WI 53188 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Jansen, Floris
[2
]
Bettinardi, Valentino
论文数: 0引用数: 0
h-index: 0
机构:
Nucl Med Unit, IRCCS Osped San Raffaele, Milan, ItalyUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Bettinardi, Valentino
[3
]
Carlson, Mackenzie
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Carlson, Mackenzie
[4
]
论文数: 引用数:
h-index:
机构:
Zeineh, Michael
[4
]
Zaharchuk, Greg
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
Zaharchuk, Greg
[4
]
McMillan, Alan B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Radiol, Madison, WI 53706 USAUniv Wisconsin, Dept Radiol, Madison, WI 53706 USA
McMillan, Alan B.
[1
]
机构:
[1] Univ Wisconsin, Dept Radiol, Madison, WI 53706 USA
[2] GE Healthcare, PET MR Engn, Waukesha, WI 53188 USA
[3] Nucl Med Unit, IRCCS Osped San Raffaele, Milan, Italy
[4] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
brain imaging;
data-driven motion estimation;
list-mode;
PET reconstruction;
rigid motion correction;
ultrashort frames;
HEAD MOTION;
REGISTRATION;
RECONSTRUCTION;
PERFORMANCE;
IMAGES;
D O I:
10.1002/mp.14889
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Purpose: Data-driven rigid motion estimation for PET brain imaging is usually performed using data frames sampled at low temporal resolution to reduce the overall computation time and to provide adequate signal-to-noise ratio in the frames. In recent work it has been demonstrated that list-mode reconstructions of ultrashort frames are sufficient for motion estimation and can be performed very quickly. In this work we take the approach of using image-based registration of reconstructions of very short frames for data-driven motion estimation, and optimize a number of reconstruction and registration parameters (frame duration, MLEM iterations, image pixel size, post-smoothing filter, reference image creation, and registration metric) to ensure accurate registrations while maximizing temporal resolution and minimizing total computation time. Methods: Data from F-18-fluorodeoxyglucose (FDG) and F-18-florbetaben (FBB) tracer studies with varying count rates are analyzed, for PET/MR and PET/CT scanners. For framed reconstructions using various parameter combinations interframe motion is simulated and image-based registrations are performed to estimate that motion. Results: For FDG and FBB tracers using 4 x 10(5) true and scattered coincidence events per frame ensures that 95% of the registrations will be accurate to within 1 mm of the ground truth. This corresponds to a frame duration of 0.5-1 sec for typical clinical PET activity levels. Using four MLEM iterations with no subsets, a transaxial pixel size of 4 mm, a post-smoothing filter with 4-6 mm full width at half maximum, and averaging two or more frames to create the reference image provides an optimal set of parameters to produce accurate registrations while keeping the reconstruction and processing time low. Conclusions: It is shown that very short frames (<= 1 sec) can be used to provide accurate and quick data-driven rigid motion estimates for use in an event-by-event motion corrected reconstruction. (C) 2021 American Association of Physicists in Medicine
机构:
Med Univ Vienna, Ctr Med Phys & Biomed Engn, QIMP Team, Vienna, Austria
Cedars Sinai Med Ctr, Artificial Intelligence Med Program, Los Angeles, CA 90048 USAMed Univ Vienna, Ctr Med Phys & Biomed Engn, QIMP Team, Vienna, Austria
Lassen, Martin Lyngby
Beyer, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ Vienna, Ctr Med Phys & Biomed Engn, QIMP Team, Vienna, AustriaMed Univ Vienna, Ctr Med Phys & Biomed Engn, QIMP Team, Vienna, Austria
Beyer, Thomas
Berger, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ Vienna, Ctr Med Phys & Biomed Engn, QIMP Team, Vienna, AustriaMed Univ Vienna, Ctr Med Phys & Biomed Engn, QIMP Team, Vienna, Austria
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1250 First Ave,Box 84, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, 1250 First Ave,Box 84, New York, NY 10065 USA
Kesner, Adam
Schmidtlein, C. Ross
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1250 First Ave,Box 84, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, 1250 First Ave,Box 84, New York, NY 10065 USA
Schmidtlein, C. Ross
Kuntner, Claudia
论文数: 0引用数: 0
h-index: 0
机构:
AIT, Seibersdorf, AustriaMem Sloan Kettering Canc Ctr, Dept Med Phys, 1250 First Ave,Box 84, New York, NY 10065 USA