Fusing Depth and Silhouette for Scanning Transparent Object with RGB-D Sensor

被引:12
|
作者
Ji, Yijun [1 ]
Xia, Qing [1 ]
Zhang, Zhijiang [1 ]
机构
[1] Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Shanghai, Peoples R China
关键词
RECONSTRUCTION;
D O I
10.1155/2017/9796127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
3D reconstruction based on structured light or laser scan has been widely used in industrial measurement, robot navigation, and virtual reality. However, most modern range sensors fail to scan transparent objects and some other special materials, of which the surface cannot reflect back the accurate depth because of the absorption and refraction of light. In this paper, we fuse the depth and silhouette information from an RGB-D sensor (Kinect v1) to recover the lost surface of transparent objects. Our system is divided into two parts. First, we utilize the zero and wrong depth led by transparent materials from multiple views to search for the 3D region which contains the transparent object. Then, based on shape from silhouette technology, we recover the 3D model by visual hull within these noisy regions. Joint Grabcut segmentation is operated on multiple color images to extract the silhouette. The initial constraint for Grabcut is automatically determined. Experiments validate that our approach can improve the 3D model of transparent object in real-world scene. Our system is time-saving, robust, and without any interactive operation throughout the process.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] Depth Error Elimination for RGB-D Cameras
    Gao, Yue
    Yang, You
    Zhen, Yi
    Dai, Qionghai
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 6 (02)
  • [42] RGB-D SLAM with Deep Depth Completion
    Serhatoglu, Ali Osman
    Guclu, Oguzhan
    Can, Ahmet Burak
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 59 - 67
  • [43] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [44] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [45] Object Recognition in Noisy RGB-D Data
    Carlos Rangel, Jose
    Morell, Vicente
    Cazorla, Miguel
    Orts-Escolano, Sergio
    Garcia Rodriguez, Jose
    BIOINSPIRED COMPUTATION IN ARTIFICIAL SYSTEMS, PT II, 2015, 9108 : 261 - 270
  • [46] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [47] RGB-D Object Tracking with Occlusion Detection
    Xie, Yujun
    Lu, Yao
    Gu, Shuang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 11 - 15
  • [48] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [49] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE Transactions on Image Processing, 2024, 33 : 6660 - 6675
  • [50] Depth-Scale Method in 3D Registration of RGB-D Sensor Outputs
    Bozkurt, Ismail
    Ozden, Kemal Egemen
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS (VISAPP), VOL 1, 2014, : 470 - 475