Incremental modelling for compositional data streams

被引:3
|
作者
Wei, Yuan [1 ]
Wang, Huiwen [1 ,2 ]
Wang, Shanshan [1 ]
Saporta, Gilbert [3 ]
机构
[1] Beihang Univ, Sch Econ & Management, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Beijing Key Lab Emergence Support Simulat Technol, Beijing, Peoples R China
[3] Conservatoire Natl Arts & Metiers, Appl Stat, Paris, France
基金
中国国家自然科学基金;
关键词
Compositional data; Covariance matrix; Eigen decomposition; Data stream; PRINCIPAL COMPONENT ANALYSIS; SELECTION;
D O I
10.1080/03610918.2018.1455870
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Incremental modelling of data streams is of great practical importance, as shown by its applications in advertising and financial data analysis. We propose two incremental covariance matrix decomposition methods for a compositional data type. The first method, exact incremental covariance decomposition of compositional data (C-EICD), gives an exact decomposition result. The second method, covariance-free incremental covariance decomposition of compositional data (C-CICD), is an approximate algorithm that can efficiently compute high-dimensional cases. Based on these two methods, many frequently used compositional statistical models can be incrementally calculated. We take multiple linear regression and principle component analysis as examples to illustrate the utility of the proposed methods via extensive simulation studies.
引用
收藏
页码:2229 / 2243
页数:15
相关论文
共 50 条
  • [31] Multi-Context Incremental Reasoning over Data Streams
    Mebrek, Wafaa
    Bouzeghoub, Amel
    2023 IEEE INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2023, : 150 - 157
  • [32] A Fast Incremental Kernel Principal Component Analysis for Data Streams
    Joseph, Annie Anak
    Ozawa, Seiichi
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3135 - 3142
  • [33] Dynamic incremental SVM learning algorithm for mining, data streams
    Li, Zhong-Wei
    Yang, Jrng
    Zhang, Jian-Pei
    PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON DATA, PRIVACY, AND E-COMMERCE, 2007, : 35 - +
  • [34] Incremental mining of closed sequential patterns in multiple data streams
    Yang S.-Y.
    Chao C.-M.
    Chen P.-Z.
    Sun C.-H.
    Journal of Networks, 2011, 6 (05) : 728 - 735
  • [35] Incremental evaluation of sliding-window queries over data streams
    Ghanem, Thanaa M.
    Hammad, Moustafa A.
    Mokbel, Mohamed F.
    Aref, Walid G.
    Elmagarmid, Ahmed K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (01) : 57 - 72
  • [36] Robust Incremental Broad Learning System for Data Streams of Uncertain Scale
    Zhong, Linjun
    Chen, C. L. Philip
    Guo, Jifeng
    Zhang, Tong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [37] Classification of Data Streams by Incremental Semi-supervised Fuzzy Clustering
    Castellano, G.
    Fanelli, A. M.
    FUZZY LOGIC AND SOFT COMPUTING APPLICATIONS, WILF 2016, 2017, 10147 : 185 - 194
  • [38] An incremental fuzzy decision tree classification method for mining data streams
    Wang, Tao
    Li, Zhoujun
    Yan, Yuejin
    Chen, Huowang
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, PROCEEDINGS, 2007, 4571 : 91 - +
  • [39] Immune-inspired incremental feature selection technology to data streams
    Yue, Xun
    Mo, Hongwei
    Chi, Zhong-Xian
    APPLIED SOFT COMPUTING, 2008, 8 (02) : 1041 - 1049
  • [40] SPAMS: A Novel Incremental Approach for Sequential Pattern Mining in Data Streams
    Vinceslas, Lionel
    Symphor, Jean-Emile
    Mancheron, Alban
    Poncelet, Pascal
    ADVANCES IN KNOWLEDGE DISCOVERY AND MANAGEMENT, 2010, 292 : 201 - 216