Incremental modelling for compositional data streams

被引:3
|
作者
Wei, Yuan [1 ]
Wang, Huiwen [1 ,2 ]
Wang, Shanshan [1 ]
Saporta, Gilbert [3 ]
机构
[1] Beihang Univ, Sch Econ & Management, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Beijing Key Lab Emergence Support Simulat Technol, Beijing, Peoples R China
[3] Conservatoire Natl Arts & Metiers, Appl Stat, Paris, France
基金
中国国家自然科学基金;
关键词
Compositional data; Covariance matrix; Eigen decomposition; Data stream; PRINCIPAL COMPONENT ANALYSIS; SELECTION;
D O I
10.1080/03610918.2018.1455870
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Incremental modelling of data streams is of great practical importance, as shown by its applications in advertising and financial data analysis. We propose two incremental covariance matrix decomposition methods for a compositional data type. The first method, exact incremental covariance decomposition of compositional data (C-EICD), gives an exact decomposition result. The second method, covariance-free incremental covariance decomposition of compositional data (C-CICD), is an approximate algorithm that can efficiently compute high-dimensional cases. Based on these two methods, many frequently used compositional statistical models can be incrementally calculated. We take multiple linear regression and principle component analysis as examples to illustrate the utility of the proposed methods via extensive simulation studies.
引用
收藏
页码:2229 / 2243
页数:15
相关论文
共 50 条
  • [21] Adaptive online incremental learning for evolving data streams
    Zhang, Si -si
    Liu, Jian-wei
    Zuo, Xin
    APPLIED SOFT COMPUTING, 2021, 105
  • [22] Predictive Modelling from Data Streams
    Parisot, Olivier
    Otjacques, Benoit
    ERCIM NEWS, 2016, (107): : 48 - 49
  • [23] Incremental Algorithm for Discovering Frequent Subsequences in Multiple Data Streams
    Al-Mulla, Reem
    Al Aghbari, Zaher
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2011, 7 (04) : 1 - 20
  • [24] A Hybrid Incremental Regression Neural Network for Uncertain Data Streams
    Yu, Hang
    Lu, Jie
    Xu, Jialu
    Zhang, Guangquan
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [25] On the utility of incremental feature selection for the classification of textual data streams
    Katakis, L
    Tsoumakas, G
    Vlahavas, L
    ADVANCES IN INFORMATICS, PROCEEDINGS, 2005, 3746 : 338 - 348
  • [26] Incremental multi-label classification of evolving data streams
    Yin, Zhiwu
    Huang, Shangteng
    Journal of Computational Information Systems, 2007, 3 (06): : 2189 - 2193
  • [27] Monitoring Incremental Histogram Distribution for Change Detection in Data Streams
    Sebastiao, Raquel
    Gama, Joao
    Rodrigues, Pedro Pereira
    Bernardes, Joao
    KNOWLEDGE DISCOVERY FROM SENSOR DATA, 2010, 5840 : 25 - +
  • [28] iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams
    Muschalik, Maximilian
    Fumagalli, Fabian
    Hammer, Barbara
    Huellermeier, Eyke
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT III, 2023, 14171 : 428 - 445
  • [29] An incremental Hough transform for detecting ellipses in Image Data Streams
    Sellah, Sofiane
    Nasraoui, Olfa
    20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 2, PROCEEDINGS, 2008, : 45 - 48
  • [30] Class Imbalance Robust Incremental LPSVM for Data Streams Learning
    Zhu, Lei
    Pang, Shaoning
    Chen, Gang
    Sarrafzadeh, Abdolhossein
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,