Incremental modelling for compositional data streams

被引:3
|
作者
Wei, Yuan [1 ]
Wang, Huiwen [1 ,2 ]
Wang, Shanshan [1 ]
Saporta, Gilbert [3 ]
机构
[1] Beihang Univ, Sch Econ & Management, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[2] Beijing Key Lab Emergence Support Simulat Technol, Beijing, Peoples R China
[3] Conservatoire Natl Arts & Metiers, Appl Stat, Paris, France
基金
中国国家自然科学基金;
关键词
Compositional data; Covariance matrix; Eigen decomposition; Data stream; PRINCIPAL COMPONENT ANALYSIS; SELECTION;
D O I
10.1080/03610918.2018.1455870
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Incremental modelling of data streams is of great practical importance, as shown by its applications in advertising and financial data analysis. We propose two incremental covariance matrix decomposition methods for a compositional data type. The first method, exact incremental covariance decomposition of compositional data (C-EICD), gives an exact decomposition result. The second method, covariance-free incremental covariance decomposition of compositional data (C-CICD), is an approximate algorithm that can efficiently compute high-dimensional cases. Based on these two methods, many frequently used compositional statistical models can be incrementally calculated. We take multiple linear regression and principle component analysis as examples to illustrate the utility of the proposed methods via extensive simulation studies.
引用
收藏
页码:2229 / 2243
页数:15
相关论文
共 50 条
  • [1] Incremental computing methods of canonical correlation analysis for compositional data streams
    Kong, Boao
    Lu, Shan
    Wang, Huiwen
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (10): : 2851 - 2858
  • [2] An Incremental Classifier from Data Streams
    Pratama, Mahardhika
    Anavatti, Sreenatha G.
    Lughofer, Edwin
    ARTIFICIAL INTELLIGENCE: METHODS AND APPLICATIONS, 2014, 8445 : 15 - 28
  • [3] Incremental and Parallel Analytics on Astrophysical Data Streams
    Mishin, Dmitryz
    Budavari, Tamas
    Szalay, Alexander
    Ahmad, Yanif
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1078 - 1086
  • [4] Efficient incremental subspace clustering in data streams
    Kontaki, Maria
    Papadopoulos, Apostolos N.
    Manolopoulos, Yannis
    10TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2006, : 53 - 60
  • [5] Regularized and incremental decision trees for data streams
    Barddal, Jean Paul
    Enembreck, Fabricio
    ANNALS OF TELECOMMUNICATIONS, 2020, 75 (9-10) : 493 - 503
  • [6] Chunk incremental LDA computing on data streams
    Pang, S
    Ozawa, S
    Kasabov, N
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 2, PROCEEDINGS, 2005, 3497 : 51 - 56
  • [7] Incremental Learning Algorithm for Dynamic Data Streams
    Kuthadi, Venu Madhav
    Govardhan, A.
    Chand, P. Prem
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (09): : 338 - 345
  • [8] Incremental Query Processing on Big Data Streams
    Fegaras, Leonidas
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (11) : 2998 - 3012
  • [9] Incremental local outlier detection for data streams
    Pokrajac, Dragojub
    Lazarevic, Aleksandar
    Latecki, Longin Jan
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 504 - 515
  • [10] Regularized and incremental decision trees for data streams
    Jean Paul Barddal
    Fabrício Enembreck
    Annals of Telecommunications, 2020, 75 : 493 - 503