On the existence of positive least energy solutions for a coupled Schrodinger system with critical exponent

被引:0
|
作者
Ye, Hongyu [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Peoples R China
关键词
coupled Schrodinger system; positive least energy solutions; critical exponent; variational methods; PHASE-SEPARATION; GROUND-STATES; BOUND-STATES; EQUATIONS; POTENTIALS; SPIKES;
D O I
10.1002/mma.4034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following coupled Schrodinger system with critical exponent: {-Delta u = lambda u + vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(ss-1)v, x epsilon Omega, -Delta v = mu vertical bar v vertical bar V2*-2+ vertical bar u vertical bar(alpha) vertical bar v vertical bar(ss-1), x epsilon Omega, u, v > 0, x epsilon Omega, u = v = 0, x epsilon partial derivative Omega, where Omega subset of R-N (N >= 3) is a smooth bounded domain, lambda > 0, mu >= 0, and alpha,ss >= 1, alpha + ss = 2* = 2N/N-2. Under certain conditions on lambda and mu, we show that this problem has at least one positive least energy solution. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1032 / 1043
页数:12
相关论文
共 50 条
  • [31] Existence and concentration of positive solutions for coupled Schrodinger equations
    Cheng, Rong
    Wang, Jun
    APPLICABLE ANALYSIS, 2017, 96 (05) : 778 - 798
  • [32] Existence of least-energy sign-changing solutions for Schrodinger-Poisson system with critical growth
    Wang, Da-Bin
    Zhang, Hua-Bo
    Guan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) : 2284 - 2301
  • [33] Existence of Solutions to Quasilinear Schrodinger Equations Involving Critical Sobolev Exponent
    Wang, Youjun
    Li, Zhouxin
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (02): : 401 - 420
  • [34] Multiple positive solutions for Schrodinger-Poisson system involving singularity and critical exponent
    Lei, Chun-Yu
    Liao, Jia-Feng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (07) : 2417 - 2430
  • [35] LEAST ENERGY NODAL SOLUTIONS FOR A DEFOCUSING SCHRODINGER EQUATION WITH SUPERCRITICAL EXPONENT
    Yang, Minbo
    Santos, Carlos Alberto
    Zhou, Jiazheng
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 1 - 23
  • [36] Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent
    Zhen, Maoding
    He, Jinchun
    Xu, Haoyuan
    Yang, Meihua
    BOUNDARY VALUE PROBLEMS, 2018,
  • [37] Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent
    Maoding Zhen
    Jinchun He
    Haoyuan Xu
    Meihua Yang
    Boundary Value Problems, 2018
  • [38] Existence of least energy positive and nodal solutions for a quasilinear Schrodinger problem with potentials vanishing at infinity
    Figueiredo, Giovany
    Neto, Sandra Moreira
    Ruviaro, Ricardo
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
  • [40] Existence of Positive Solutions for Kirchhoff Type Problems with Critical Exponent
    Sun Yijing
    Liu Xing
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 25 (02): : 187 - 198