Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent

被引:0
|
作者
Maoding Zhen
Jinchun He
Haoyuan Xu
Meihua Yang
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
来源
关键词
Fractional Laplacian; Critical exponent; Ground state solution; Higher energy solution; 35J50; 35B33; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following critical system with fractional Laplacian: {(−Δ)su+λ1u=μ1|u|2∗−2u+αγ2∗|u|α−2u|v|βin Ω,(−Δ)sv+λ2v=μ2|v|2∗−2v+βγ2∗|u|α|v|β−2vin Ω,u=v=0in RN∖Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textstyle\begin{cases} (-\Delta)^{s}u+\lambda_{1}u=\mu_{1}|u|^{2^{\ast}-2}u+\frac{\alpha \gamma}{2^{\ast}}|u|^{\alpha-2}u|v|^{\beta} & \text{in } \Omega, \\ (-\Delta)^{s}v+\lambda_{2}v= \mu_{2}|v|^{2^{\ast}-2}v+\frac{\beta \gamma}{2^{\ast}}|u|^{\alpha}|v|^{\beta-2}v & \text{in } \Omega, \\ u=v=0 & \text{in } \mathbb{R}^{N}\setminus\Omega, \end{cases} $$\end{document} where (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta)^{s}$\end{document} is the fractional Laplacian, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< s<1$\end{document}, μ1,μ2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu_{1},\mu_{2}>0$\end{document}, 2∗=2NN−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\ast}=\frac{2N}{N-2s}$\end{document} is a fractional critical Sobolev exponent, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}, 1<α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1<\alpha$\end{document}, β<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta<2$\end{document}, α+β=2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha+\beta=2^{\ast}$\end{document}, Ω is an open bounded set of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document} with Lipschitz boundary and λ1,λ2>−λ1,s(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega)$\end{document}, λ1,s(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1,s}(\Omega)$\end{document} is the first eigenvalue of the non-local operator (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta)^{s}$\end{document} with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma>0$\end{document}. Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when γ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma\rightarrow0$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent
    Zhen, Maoding
    He, Jinchun
    Xu, Haoyuan
    Yang, Meihua
    BOUNDARY VALUE PROBLEMS, 2018,
  • [2] Multiple Positive Solutions for a Fractional Laplacian System with Critical Nonlinearities
    Li, Qin
    Yang, Zuodong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1879 - 1905
  • [3] Multiple Positive Solutions for a Fractional Laplacian System with Critical Nonlinearities
    Qin Li
    Zuodong Yang
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1879 - 1905
  • [4] POSITIVE SOLUTIONS OF NONHOMOGENEOUS FRACTIONAL LAPLACIAN PROBLEM WITH CRITICAL EXPONENT
    Shang, Xudong
    Zhang, Jihui
    Yang, Yang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 567 - 584
  • [5] POSITIVE GROUND STATE SOLUTIONS FOR FRACTIONAL LAPLACIAN SYSTEM WITH ONE CRITICAL EXPONENT AND ONE SUBCRITICAL EXPONENT
    Zhen, Maoding
    He, Jinchun
    Xu, Haoyuan
    Yang, Meihua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6523 - 6539
  • [6] POSITIVE LEAST ENERGY SOLUTIONS OF FRACTIONAL LAPLACIAN SYSTEMS WITH CRITICAL EXPONENT
    Wang, Qingfang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [7] Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent
    Peng, Shuangjie
    Shuai, Wei
    Wang, Qingfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 709 - 731
  • [8] Sign-changing solutions of fractional Laplacian system with critical exponent
    Li, Qi
    Wen, Shixin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (08) : 6962 - 6989
  • [9] Multiple positive solutions for a critical fractional p-Laplacian system with concave nonlinearities
    Echarghaoui, Rachid
    Khouakhi, Moussa
    Masmodi, Mohamed
    Sersif, Rachid
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [10] On critical exponent for the existence and multiplicity of positive weak solutions for a class of (p, q)-Laplacian nonlinear system
    Ghaemi, M. B.
    Afrouzi, G. A.
    Rasouli, S. H.
    Choubin, M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 3 (04): : 432 - 439