Time series forecasting of petroleum production using deep LSTM recurrent networks

被引:460
|
作者
Sagheer, Alaa [1 ,2 ]
Kotb, Mostafa [2 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Al Hufuf, Saudi Arabia
[2] Aswan Univ, Fac Sci, Ctr Artificial Intelligence & Robot CAIRO, Aswan, Egypt
关键词
Time series forecasting; Deep neural networks; Recurrent neural networks; Long-short term memory; Petroleum production forecasting; NEURAL-NETWORKS; SELECTION;
D O I
10.1016/j.neucom.2018.09.082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting (TSF) is the task of predicting future values of a given sequence using historical data. Recently, this task has attracted the attention of researchers in the area of machine learning to address the limitations of traditional forecasting methods, which are time-consuming and full of complexity. With the increasing availability of extensive amounts of historical data along with the need of performing accurate production forecasting, particularly a powerful forecasting technique infers the stochastic dependency between past and future values is highly needed. In this paper, we propose a deep learning approach capable to address the limitations of traditional forecasting approaches and show accurate predictions. The proposed approach is a deep long-short term memory (DLSTM) architecture, as an extension of the traditional recurrent neural network. Genetic algorithm is applied in order to optimally configure DLSTM's optimum architecture. For evaluation purpose, two case studies from the petroleum industry domain are carried out using the production data of two actual oilfields. Toward a fair evaluation, the performance of the proposed approach is compared with several standard methods, either statistical or soft computing. Using different measurement criteria, the empirical results show that the proposed DLSTM model outperforms other standard approaches. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [41] Multi-Step wind power forecasting model Using LSTM networks, Similar Time Series and LightGBM
    Cao, Yukun
    Gui, Liai
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 192 - 197
  • [42] Time series forecasting of COVID-19 infections and deaths in Alpha and Delta variants using LSTM networks
    Sheikhi, Farnaz
    Kowsari, Zahra
    PLOS ONE, 2023, 18 (10):
  • [44] Robustness of LSTM neural networks for multi-step forecasting of chaotic time series
    Sangiorgio, Matteo
    Dercole, Fabio
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [45] Sales forecasting using time series and neural networks
    Ansuj, AP
    Camargo, ME
    Radharamanan, R
    Petry, DG
    COMPUTERS & INDUSTRIAL ENGINEERING, 1996, 31 (1-2) : 421 - 424
  • [46] Time series forecasting using cascade correlation networks
    David Velasquez, Juan
    Alonso Villa, Fernan
    Souza, Reinaldo C.
    INGENIERIA E INVESTIGACION, 2010, 30 (01): : 157 - 162
  • [47] MODEL AND DATA UNCERTAINTY FOR SATELLITE TIME SERIES FORECASTING WITH DEEP RECURRENT MODELS
    Russwurm, Marc
    Ali, Mohsin
    Zhu, Xiao Xiang
    Gal, Yarin
    Koerner, Marco
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7025 - 7028
  • [48] Automating Time Series Forecasting on Crime Data using RNN-LSTM
    Devi, J. Vimala
    Kavitha, K. S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (10) : 458 - 463
  • [49] FORECASTING OF ENERGY CONSUMPTION AND PRODUCTION USING RECURRENT NEURAL NETWORKS
    Shabbir, Noman
    Kutt, Lauri
    Jawad, Muhammad
    Iqbal, Muhammad Naveed
    Ghahfaroki, Payam Shams
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 18 (03) : 190 - 197
  • [50] An adaptive embedding procedure for time series forecasting with deep neural networks
    Succetti, Federico
    Rosato, Antonello
    Panella, Massimo
    NEURAL NETWORKS, 2023, 167 : 715 - 729