Time series forecasting of petroleum production using deep LSTM recurrent networks

被引:460
|
作者
Sagheer, Alaa [1 ,2 ]
Kotb, Mostafa [2 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Al Hufuf, Saudi Arabia
[2] Aswan Univ, Fac Sci, Ctr Artificial Intelligence & Robot CAIRO, Aswan, Egypt
关键词
Time series forecasting; Deep neural networks; Recurrent neural networks; Long-short term memory; Petroleum production forecasting; NEURAL-NETWORKS; SELECTION;
D O I
10.1016/j.neucom.2018.09.082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting (TSF) is the task of predicting future values of a given sequence using historical data. Recently, this task has attracted the attention of researchers in the area of machine learning to address the limitations of traditional forecasting methods, which are time-consuming and full of complexity. With the increasing availability of extensive amounts of historical data along with the need of performing accurate production forecasting, particularly a powerful forecasting technique infers the stochastic dependency between past and future values is highly needed. In this paper, we propose a deep learning approach capable to address the limitations of traditional forecasting approaches and show accurate predictions. The proposed approach is a deep long-short term memory (DLSTM) architecture, as an extension of the traditional recurrent neural network. Genetic algorithm is applied in order to optimally configure DLSTM's optimum architecture. For evaluation purpose, two case studies from the petroleum industry domain are carried out using the production data of two actual oilfields. Toward a fair evaluation, the performance of the proposed approach is compared with several standard methods, either statistical or soft computing. Using different measurement criteria, the empirical results show that the proposed DLSTM model outperforms other standard approaches. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [31] The Performance of LSTM and BiLSTM in Forecasting Time Series
    Siami-Namini, Sima
    Tavakoli, Neda
    Namin, Akbar Siami
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3285 - 3292
  • [32] Water consumption time series forecasting in urban centers using deep neural networks
    Garcia-Soto, C. G.
    Torres, J. F.
    Zamora-Izquierdo, M. A.
    Palma, J.
    Troncoso, A.
    APPLIED WATER SCIENCE, 2024, 14 (02)
  • [33] Water consumption time series forecasting in urban centers using deep neural networks
    C. G. García-Soto
    J. F. Torres
    M. A. Zamora-Izquierdo
    J. Palma
    A. Troncoso
    Applied Water Science, 2024, 14
  • [34] Correlated Time Series Forecasting using Multi-Task Deep Neural Networks
    Cirstea, Razvan-Gabriel
    Micu, Darius-Valer
    Muresan, Gabriel-Marcel
    Guo, Chenjuan
    Yang, Bin
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1527 - 1530
  • [35] Time Series Forecasting using NARX and NARMAX models with shallow and deep neural networks
    Munoz, Francisco
    Acuna, Gonzalo
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [36] Seasonal Streamflow Series Forecasting Using Recurrent Neural Networks
    Belotti, Jonatas T.
    Lazzarin, Lilian N. A.
    Usberti, Fabio L.
    Siqueira, Hugo
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [37] Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach
    Bandara, Kasun
    Bergmeir, Christoph
    Smyl, Slawek
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140 (140)
  • [38] Time Series Forecasting using Recurrent Neural Networks modified by Bayesian Inference in the Learning Process
    Rodriguez Rivero, Cristian
    Pucheta, Julian
    Otano, Paula
    David Orjuela-Canon, Alvaro
    Patino, Daniel
    Franco, Leonardo
    Gorrostieta, Efren
    Puglisi, Jose Luis
    Juarez, Gustavo
    2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,
  • [39] Solar Irradiance Forecasting Using Deep Recurrent Neural Networks
    Alzahrani, Ahmad
    Shamsi, Pourya
    Ferdowsi, Mehdi
    Dagli, Cihan
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 988 - 994
  • [40] Financial and Non-Stationary Time Series Forecasting using LSTM Recurrent Neural Network for Short and Long Horizon
    Preeti
    Bala, Rajni
    Singh, Ram Pal
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,