MacWilliams extension theorems and the local-global property for codes over Frobenius rings

被引:18
|
作者
Barra, Aleams [1 ]
Gluesing-Luerssen, Heide [2 ]
机构
[1] Bandung Inst Technol, Fac Math & Nat Sci, Bandung 40132, Indonesia
[2] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
ROSENBLOOM-TSFASMAN; LINEAR CODES; FINITE; EQUIVALENCE; CLASSIFICATION; PARTITIONS; ISOMETRIES; DUALITY; SPACES;
D O I
10.1016/j.jpaa.2014.04.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The MacWilliams extension theorem is investigated for various weight functions over finite Frobenius rings. The problem is reformulated in terms of a local global property for subgroups of the general linear group. Among other things, it is shown that the extension theorem holds true for poset weights if and only if the underlying poset is hierarchical. Specifically, the Rosenbloom-Tsfasman weight for vector codes satisfies the extension theorem, whereas the Niederreiter-Rosenbloom-Tsfasman weight for matrix codes does not. A short character-theoretic proof of the well-known MacWilliams extension theorem for the homogeneous weight is provided. Moreover it is shown that the extension theorem carries over to direct products of weights, but not to symmetrized products. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:703 / 728
页数:26
相关论文
共 50 条
  • [41] Self-dual codes over commutative Frobenius rings
    Dougherty, Steven T.
    Kim, Jon-Lark
    Kulosman, Hamid
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (01) : 14 - 26
  • [42] ON PLOTKIN-OPTIMAL CODES OVER FINITE FROBENIUS RINGS
    Greferath, Marcus
    McGuire, Gary
    O'Sullivan, Michael E.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (06) : 799 - 815
  • [43] The extension theorem for bi-invariant weights over Frobenius rings and Frobenius bimodules
    Gnilke, Oliver W.
    Greferath, Marcus
    Honold, Thomas
    Wood, Jay A.
    Zumbraegel, Jens
    RINGS, MODULES AND CODES, 2019, 727 : 117 - 129
  • [44] Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Tapia-Recillas, H.
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 1 - 21
  • [45] Duals of constacyclic codes over finite local Frobenius non-chain rings of length 4
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Tapia-Recillas, H.
    DISCRETE MATHEMATICS, 2018, 341 (04) : 919 - 933
  • [46] Duality and local-global principle for local Henselian rings of dimension 2
    Izquierdo, Diego
    Riou, Joel
    ALGEBRAIC GEOMETRY, 2019, 6 (02): : 148 - 176
  • [47] Local-global property for G-invariant terms
    Kazda, Alexandr
    Kompatscher, Michael
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (06) : 1209 - 1231
  • [48] ON THE LOCAL-GLOBAL DIVISIBILITY OVER ABELIAN VARIETIES
    Gillibert, Florence
    Ranieri, Gabriele
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (02) : 847 - 873
  • [49] MACWILLIAMS IDENTITY FOR LINEAR CODES OVER FINITE CHAIN RINGS WITH RESPECT TO HOMOGENEOUS WEIGHT
    Moeini, Mina
    Rezaei, Rashid
    Samei, Karim
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) : 1163 - 1173
  • [50] Linear codes over a general infinite family of rings and MacWilliams-type relations
    Irwansyah
    Suprijanto, Djoko
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 53 - 60