Local-global property for G-invariant terms

被引:0
|
作者
Kazda, Alexandr [1 ]
Kompatscher, Michael [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 49-83, Prague 18675 8, Czech Republic
基金
欧洲研究理事会;
关键词
Maltsev condition; permutation group; local-global property; oligomorphic algebra;
D O I
10.1142/S0218196722500527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For some Maltsev conditions Sigma it is enough to check if a finite algebra A satisfies Sigma locally on subsets of bounded size in order to decide whether A satisfies Sigma (globally). This local global property is the main known source of tractability results for deciding Maltsev conditions. In this paper, we investigate the local-global property for the existence of a G-term, i.e. an n-ary term that is invariant under permuting its variables according to a permutation group G <= Sym(n). Our results imply in particular that all cyclic loop conditions (in the sense of Bodirsky, Starke, and Vucaj) have the local-global property (and thus can be decided in polynomial time), while symmetric terms of arity n > 2 fail to have it.
引用
收藏
页码:1209 / 1231
页数:23
相关论文
共 50 条
  • [1] Extremal G-invariant eigenvalues of the Laplacian of G-invariant metrics
    Bruno Colbois
    Emily B. Dryden
    Ahmad El Soufi
    Mathematische Zeitschrift, 2008, 258
  • [2] Extremal g-invariant eigenvalues of the laplacian of g-invariant metrics
    Colbois, Bruno
    Dryden, Emily B.
    El Soufi, Ahmad
    MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) : 29 - 41
  • [3] G-INVARIANT HERMITIAN-FORMS AND G-INVARIANT ELLIPTICAL NORMS
    LI, CK
    TSING, NK
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1989, 10 (04) : 435 - 445
  • [4] On G-invariant norms
    Tam, TY
    Hill, WC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 331 (1-3) : 101 - 112
  • [5] G-INVARIANT MEASURES
    PARNES, MN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1075 - &
  • [6] G-INVARIANT DISTRIBUTIONS
    ZIEMIAN, B
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (01) : 66 - 86
  • [7] The local-global property for bitangents of plane quartics
    Ishitsuka, Yasuhiro
    Ito, Tetsushi
    Ohshita, Tatsuya
    Taniguchi, Takashi
    Uchida, Yukihiro
    JSIAM LETTERS, 2020, 12 : 41 - 44
  • [8] A local-global mixed kernel with reproducing property
    Xu, Lixiang
    Niu, Xin
    Xie, Jin
    Abel, Andrew
    Luo, Bin
    NEUROCOMPUTING, 2015, 168 : 190 - 199
  • [9] PROPERTY (T) AND LEFT G-INVARIANT COARSE EMBEDDABILITY OF TOPOLOGICAL GROUPS
    Tao Jicheng
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 28 (01): : 1 - 12
  • [10] G-invariant persistent homology
    Frosini, Patrizio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) : 1190 - 1199