Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes

被引:176
|
作者
Varon, Daniel J. [1 ,2 ]
Jacob, Daniel J. [1 ]
McKeever, Jason [2 ]
Jervis, Dylan [2 ]
Durak, Berke O. A. [2 ]
Xia, Yan [3 ]
Huang, Yi [3 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] GHGSat Inc, Montreal, PQ H2W 1Y5, Canada
[3] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 0B9, Canada
关键词
IMAGING SPECTROSCOPY; EMISSIONS; PERFORMANCE; MISSION; SPACE; CH4; QUANTIFICATION; INSTRUMENT; OZONE; LAYER;
D O I
10.5194/amt-11-5673-2018
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Anthropogenic methane emissions originate from a large number of relatively small point sources. The planned GHGSat satellite fleet aims to quantify emissions from individual point sources by measuring methane column plumes over selected similar to 10 x 10 km(2) domains with <= 50 x 50 m(2) pixel resolution and 1 %-5 % measurement precision. Here we develop algorithms for retrieving point source rates from such measurements. We simulate a large ensemble of instantaneous methane column plumes at 50 x 50 m(2) pixel resolution for a range of atmospheric conditions using the Weather Research and Forecasting model (WRF) in large eddy simulation (LES) mode and adding instrument noise. We show that standard methods to infer source rates by Gaussian plume inversion or source pixel mass balance are prone to large errors because the turbulence cannot be properly parameterized on the small scale of instantaneous methane plumes. The integrated mass enhancement (IME) method, which relates total plume mass to source rate, and the cross-sectional flux method, which infers source rate from fluxes across plume transects, are better adapted to the problem. We show that the IME method with local measurements of the 10 m wind speed can infer source rates with an error of 0.07-0.17 th(-1) + 5 %-12 % depending on instrument precision (1 %-5 %). The cross-sectional flux method has slightly larger errors (0.07-0.26 th(-1) + 8 %-12 %) but a simpler physical basis. For comparison, point sources larger than 0.3 th(-1) contribute more than 75 % of methane emissions reported to the US Greenhouse Gas Reporting Program. Additional error applies if local wind speed measurements are not available and may dominate the overall error at low wind speeds. Low winds are beneficial for source detection but detrimental for source quantification.
引用
收藏
页码:5673 / 5686
页数:14
相关论文
共 50 条
  • [21] Spatiotemporal Variability of Methane over the Amazon from Satellite Observations
    Igor Oliveira RIBEIRO
    Rodrigo Augusto Ferreira de SOUZA
    Rita Valéria ANDREOLI
    Mary Toshie KAYANO
    Patrícia dos Santos COSTA
    AdvancesinAtmosphericSciences, 2016, 33 (07) : 852 - 864
  • [22] FINE-SCALE STRUCTURE OF ODOR PLUMES IN RELATION TO INSECT ORIENTATION TO DISTANT PHEROMONE AND OTHER ATTRACTANT SOURCES
    MURLIS, J
    JONES, CD
    PHYSIOLOGICAL ENTOMOLOGY, 1981, 6 (01) : 71 - 86
  • [23] Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux
    Roalkvam, Irene
    Dahle, Hakon
    Chen, Yifeng
    Jorgensen, Steffen Leth
    Haflidason, Haflidi
    Steen, Ida Helene
    FRONTIERS IN MICROBIOLOGY, 2012, 3
  • [24] Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio
    Ramsden, Alice E.
    Ganesan, Anita L.
    Western, Luke M.
    Rigby, Matthew
    Manning, Alistair J.
    Foulds, Amy
    France, James L.
    Barker, Patrick
    Levy, Peter
    Say, Daniel
    Wisher, Adam
    Arnold, Tim
    Rennick, Chris
    Stanley, Kieran M.
    Young, Dickon
    O'Doherty, Simon
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (06) : 3911 - 3929
  • [25] Carbonate chimneys at the highly productive point Dume methane seep: Fine-scale mineralogical, geochemical, and microbiological heterogeneity reflects dynamic and long-lived methane-metabolizing habitats
    Schroedl, Peter
    Silverstein, Michael
    DiGregorio, Daisy
    Blattler, Clara L.
    Loyd, Sean
    Bradbury, Harold J.
    Edwards, R. Lawrence
    Marlow, Jeffrey
    GEOBIOLOGY, 2024, 22 (04)
  • [26] ASSESSMENT OF ATMOSPHERIC NON-METHANE HYDROCARBONS FROM NATURAL SOURCES
    MOHNEN, VA
    ROLAND, L
    STIGLIANI, W
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (12): : 1076 - 1076
  • [27] A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations
    Miller, Scot M.
    Miller, Charles E.
    Commane, Roisin
    Chang, Rachel Y-W
    Dinardo, Steven J.
    Henderson, John M.
    Karion, Anna
    Lindaas, Jakob
    Melton, Joe R.
    Miller, John B.
    Sweeney, Colm
    Wofsy, Steven C.
    Michalak, Anna M.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (10) : 1441 - 1453
  • [28] Fine-Scale Electric Fields and Joule Heating From Observations of the Aurora
    Krcelic, P.
    Fear, R. C.
    Whiter, D.
    Lanchester, B.
    Aruliah, A. L.
    Lester, M.
    Paxton, L.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (01)
  • [29] Distribution of fine-scale mantle heterogeneity from observations of Pdiff coda
    Earle, PS
    Shearer, PM
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2001, 91 (06) : 1875 - 1881
  • [30] Coarse-scale PDEs from fine-scale observations via machine learning
    Lee, Seungjoon
    Kooshkbaghi, Mahdi
    Spiliotis, Konstantinos
    Siettos, Constantinos I.
    Kevrekidis, Ioannis G.
    CHAOS, 2020, 30 (01)