A Volumetric Approach to Biased Estimation: Demonstration on Shrinkage Estimators

被引:0
|
作者
Bikcora, Can [1 ]
Weiland, Siep [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Admissibility; biased estimation; domination; mean-squared error; parameter estimation; MSE IMPROVEMENT; UNCERTAINTIES; PARAMETERS; ERROR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes a new approach, named as the volumetric design (VD), of developing biased estimators of deterministic parameters that are known in advance to belong to a compact subset in the parameter space. For analytical tractability, this approach is demonstrated on the choice of the shrinkage parameter of an estimator that scales the celebrated minimum variance unbiased estimator (MVUE) towards zero, where a spherical set is taken as the a priori knowledge on the parameters and the mean-squared error is adopted as the performance measure. Similar to the existing methods of the minimax (MX) and the deepest minimum criterion (DMC) estimators, the VD estimator also belongs to the class of admissible estimators that dominate the MVUE on the provided parameter (spherical) set. However, as its fundamental difference, it corresponds to the estimator that has the largest total relative volume on which it dominates the other estimators in this class, thereby achieving the best volumetric robustness in this manner.
引用
收藏
页码:642 / 646
页数:5
相关论文
共 50 条
  • [1] Biased estimators with adaptive shrinkage targets for orthogonal frequency division multiple access channel estimation
    Kalyani, Sheetal
    Lakshminarayanan, Raghavendran
    Giridhar, Krishnamurthy
    IET COMMUNICATIONS, 2013, 7 (01) : 13 - 22
  • [2] On Improved Loss Estimation for Shrinkage Estimators
    Fourdrinier, Dominique
    Wells, Martin T.
    STATISTICAL SCIENCE, 2012, 27 (01) : 61 - 81
  • [3] Estimation Combining Unbiased and Possibly Biased Estimators
    Sergey Tarima
    Bonifride Tuyishimire
    Rodney Sparapani
    Lisa Rein
    John Meurer
    Journal of Statistical Theory and Practice, 2020, 14
  • [4] Estimation Combining Unbiased and Possibly Biased Estimators
    Tarima, Sergey
    Tuyishimire, Bonifride
    Sparapani, Rodney
    Rein, Lisa
    Meurer, John
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2020, 14 (02)
  • [5] ON TRUNCATION OF SHRINKAGE ESTIMATORS IN SIMULTANEOUS ESTIMATION OF NORMAL MEANS
    DEY, DK
    BERGER, JO
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (384) : 865 - 869
  • [6] Efficient Estimation and Validation of Shrinkage Estimators in Big Data Analytics
    du Plessis, Salomi
    Arashi, Mohammad
    Maribe, Gaonyalelwe
    Millard, Salomon M.
    MATHEMATICS, 2023, 11 (22)
  • [7] Minimum variance in biased estimation: Bounds and asymptotically optimal estimators
    Eldar, YC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (07) : 1915 - 1930
  • [8] Use of biased estimators for improved channel estimation in OFDM systems
    Prabhu, Vinay Uday
    Jalihal, Lbevendra
    ICSCN 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING COMMUNICATIONS AND NETWORKING, 2008, : 30 - 34
  • [9] USING SHRINKAGE ESTIMATORS TO REDUCE BIAS AND MSE IN ESTIMATION OF HEAVY TAILS
    Beirlant, Jan
    Maribe, Gaonyalelwe
    Verster, Andrehette
    REVSTAT-STATISTICAL JOURNAL, 2019, 17 (01) : 91 - 108
  • [10] Interval shrinkage estimators
    Golosnoy, Vasyl
    Liesenfeld, Roman
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (03) : 465 - 477