Interval shrinkage estimators

被引:1
|
作者
Golosnoy, Vasyl [1 ]
Liesenfeld, Roman [1 ]
机构
[1] CAU Kiel, Inst Stat & Okonometrie, D-24118 Kiel, Germany
关键词
estimation risk; feasible estimators; interval information; mean square error; shrinkage estimator;
D O I
10.1080/02664760903456434
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation of an unknown distribution parameter in situations where we believe that the parameter belongs to a finite interval. We propose for such situations an interval shrinkage approach which combines in a coherent way an unbiased conventional estimator and non-sample information about the range of plausible parameter values. The approach is based on an infeasible interval shrinkage estimator which uniformly dominates the underlying conventional estimator with respect to the mean square error criterion. This infeasible estimator allows us to obtain useful feasible counterparts. The properties of these feasible interval shrinkage estimators are illustrated both in a simulation study and in empirical examples.
引用
收藏
页码:465 / 477
页数:13
相关论文
共 50 条
  • [1] On shrinkage to interval estimators of the binomial p
    Inada, K
    Kim, HJ
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (01) : 95 - 112
  • [2] Interval Shrinkage Estimators of Scale Parameter of Exponential Distribution in the Presence of Outliers
    Nasiri, P.
    Ebrahimi, F.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 75 - 85
  • [3] CLASS OF SHRINKAGE ESTIMATORS
    FAREBROTHER, RW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1978, 40 (01): : 47 - 49
  • [4] Shrinkage estimators for covariance matrices
    Daniels, MJ
    Kass, RE
    [J]. BIOMETRICS, 2001, 57 (04) : 1173 - 1184
  • [5] Kernel Mean Shrinkage Estimators
    Muandet, Krikamol
    Sriperumbudur, Bharath
    Fukumizu, Kenji
    Gretton, Arthur
    Schoelkopf, Bernhard
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17 : 1 - 41
  • [6] Shrinkage Estimators for Uplift Regression
    Grabarczyk, Magdalena
    Rudas, Krzysztof
    [J]. MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 1752 : 524 - 537
  • [7] A CLASS OF MULTIPLE SHRINKAGE ESTIMATORS
    WITHERS, CS
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) : 147 - 156
  • [8] Shrinkage Estimators for Uplift Regression
    Rudas, Krzysztof
    Jaroszewicz, Szymon
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 607 - 623
  • [9] SHRINKAGE ESTIMATORS OF RELATIVE POTENCY
    KIM, PT
    CARTER, EM
    HUBERT, JJ
    HAND, KJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) : 615 - 621
  • [10] The risk of pretest and shrinkage estimators
    Nkurunziza, Severien
    [J]. STATISTICS, 2012, 46 (03) : 305 - 312