Interval shrinkage estimators

被引:1
|
作者
Golosnoy, Vasyl [1 ]
Liesenfeld, Roman [1 ]
机构
[1] CAU Kiel, Inst Stat & Okonometrie, D-24118 Kiel, Germany
关键词
estimation risk; feasible estimators; interval information; mean square error; shrinkage estimator;
D O I
10.1080/02664760903456434
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation of an unknown distribution parameter in situations where we believe that the parameter belongs to a finite interval. We propose for such situations an interval shrinkage approach which combines in a coherent way an unbiased conventional estimator and non-sample information about the range of plausible parameter values. The approach is based on an infeasible interval shrinkage estimator which uniformly dominates the underlying conventional estimator with respect to the mean square error criterion. This infeasible estimator allows us to obtain useful feasible counterparts. The properties of these feasible interval shrinkage estimators are illustrated both in a simulation study and in empirical examples.
引用
收藏
页码:465 / 477
页数:13
相关论文
共 50 条
  • [41] Shrinkage Estimators for Shape Parameter of Gompertz Distribution
    Zahra Shokooh Ghazani
    [J]. Journal of Statistical Theory and Practice, 2024, 18
  • [42] ON SHRINKAGE M-ESTIMATORS OF LOCATION PARAMETERS
    SALEH, AKME
    SEN, PK
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (10) : 2313 - 2329
  • [43] IMPROVEMENT RANGES FOR SHRINKAGE ESTIMATORS WITH STOCHASTIC TARGET
    ULLAH, A
    VINOD, HD
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (02) : 207 - 215
  • [44] A class of shrinkage estimators for the variance of a normal population
    Singh, HP
    Singh, R
    [J]. MICROELECTRONICS AND RELIABILITY, 1997, 37 (05): : 863 - 867
  • [45] Shrinkage Estimators for the Intercept in Linear and Uplift Regression
    Jaroszewicz, Szymon
    Rudas, Krzysztof
    [J]. SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 2023, 33 (01) : 35 - 52
  • [46] Efficient feature selection using shrinkage estimators
    Konstantinos Sechidis
    Laura Azzimonti
    Adam Pocock
    Giorgio Corani
    James Weatherall
    Gavin Brown
    [J]. Machine Learning, 2019, 108 : 1261 - 1286
  • [47] Efficient feature selection using shrinkage estimators
    Sechidis, Konstantinos
    Azzimonti, Laura
    Pocock, Adam
    Corani, Giorgio
    Weatherall, James
    Brown, Gavin
    [J]. MACHINE LEARNING, 2019, 108 (8-9) : 1261 - 1286
  • [48] SHRINKAGE AND PENALTY ESTIMATORS OF A POISSON REGRESSION MODEL
    Hossain, Shakhawat
    Ahmed, Ejaz
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (03) : 359 - 373
  • [49] Some shrinkage estimators for the variance of exponential density
    Tracy, DS
    Singh, HP
    Raghuvanshi, HS
    [J]. MICROELECTRONICS AND RELIABILITY, 1996, 36 (05): : 651 - 655
  • [50] Asymptotic properties of risks ratios of shrinkage estimators
    Abdenour, Hamdaoui
    Djamel, Benmansour
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 1181 - 1195